Southeast Asian Regional Center for Graduate Study and Research in Agriculture

Professorial Chair Lecture

Cantho City, March 29 2018

Enhancing Adaptive Capacity to Climate Change of Vulnerable Communities in the Mekong Delta of Vietnam

Vo Thanh Danh
College of Economics, Cantho University
email: ctu.edu.vn

outline

- 1. Introduction
- 2. Methodology
- 3. Findings & Discussion
- 4. Policy Recommendation

introduction

1. Introduction

- 2. Methodology
- 3. Findings & Discussion
- 4. Policy Recommendation

introduction

- To measure vulnerability level and analyze adaptive capacity of agricultural households and community regarding the effect of salinity at the study sites.
- To propose solutions that help reduce damages and losses caused by salinity and increase adaptive capacity of communities.

introduction

- specific objectives include:
 - (i) to evaluate salinity situation,
 - (ii) to evaluate vulnerability level caused by salinity,
 - (iii) to analyze adaptive capacity dealing with salinity, and
 - (iv) to propose appropriate adaptive solutions in order to deal with salinity in agricultural production.
- The study is implemented at Cau Ngang, Tra Cu, and Duyen Hai districts at Tra Vinh province.
- The study targets are agricultural households.

- 1. Introduction
- 2. Methodology
- 3. Findings & Discussion
- 4. Policy Recommendation

Social Vulnerability Index

Factor		Expected
	Variable	sign
Potential losses	- Economic vulnerability = annual values of agricultural	+
	production and aquaculture	
	- dependent ratio = dependent number/total persons in the	+
	household	
Resilience	- Losses by high tide and salinity	+
capacity	- Prepareness to coping	-
	- Disaster information access	-
	- Investment on adaptive measures before disaster coming	-
Self-recovery	- credit access	-
capacity	- Access to other helps by community	-
	- Total household income	-

Social Vulnerability Index

According to Smit et al (2006), a standardization method is used to calculate the SVI. For the positive variables, Equation (1) is applied. Conversely, for the negative variables, Equation (2) is used.

$$V_{ij} = (X_{ij} - MinX_i)/(MaxX_i - MinX_i)$$

$$V_{ii} = (X_{ii} - MaxX_i)/(MinX_i - MaxX_i)$$
(1)

where

 V_{ij} : standadized values of vulnerability of the component i for the household j X_{ij} : observed values of vulnerability of the component i for the household j $MinX_i$: minimum value of vulnerability of the component i for all households $MaxX_i$: maximum value of vulnerability of the component i for all households

Social Vulnerability Index

SVI value	Degree of vulnerability
≤ 0.20	Very low
0.20 - 0.40	Low
0.41 - 0.60	Average
0.61 - 0.80	High
0.81 - 1.00	Very high

	Determinant	Rationale	Expected
			sign
	Economic resources	- economic resources	+
		- Lack of financial resources	-
	Technology	- Lack of technology	-
	Information and skills	- Lack of informed, skilled and trained	-
		personnel	
Adaptive capacity		- Access to information increases	+
	Infrastructure	- Infrastructure	+
	Institutions	- Well-developed social institutions	+
		- Policies and regulations	+

Source: Swanson et al. (2001).

This study measures the Household Adaptive Capacity Index (HACI) using weighted mean index method.

$$\begin{aligned} \frac{\sum\limits_{i=1}^{n}w_{i}S_{i}}{\sum\limits_{i}^{n}w_{i}} + \frac{\sum\limits_{j=1}^{o}w_{j}E_{j}}{\sum\limits_{o}^{o}w_{j}} + \frac{\sum\limits_{k=1}^{p}w_{k}P_{k}}{\sum\limits_{p}^{o}w_{k}} + \frac{\sum\limits_{l=1}^{q}w_{l}N_{l}}{\sum\limits_{l=1}^{q}w_{l}} + \frac{\sum\limits_{m=1}^{r}w_{m}I_{m}}{\sum\limits_{m=1}^{r}w_{m}} \\ HACI &= \frac{\sum\limits_{i=1}^{n}w_{i}}{\sum\limits_{j=1}^{o}w_{j}} + \frac{\sum\limits_{k=1}^{p}w_{k}P_{k}}{\sum\limits_{k=1}^{q}w_{k}} + \frac{\sum\limits_{l=1}^{q}w_{l}N_{l}}{\sum\limits_{l=1}^{r}w_{m}} + \frac{\sum\limits_{m=1}^{r}w_{m}I_{m}}{\sum\limits_{m=1}^{r}w_{m}} \end{aligned}$$

where

n, o, p, q and r are the total numbers of social, economic, physical, natural and institutional indicators respectively.

 w_i , w_j , w_k , w_l , and w_m are the weights of Social indicator i (S_i), Economic indicator j (E_j), Physical indicator k (P_k), Natural indicator l (N_l), and Institutional indicator m (I_m) respectively. These weights are equally assigned to each indicator.

Community –based Adaptive Capacity Index (HACI):

$$CACI = \frac{\sum\limits_{i=1}^{n} HACIS_{i}}{n} + \frac{\sum\limits_{i=1}^{n} HACIE_{i}}{n} + \frac{\sum\limits_{i=1}^{n} HACIP_{i}}{n} + \frac{\sum\limits_{i=1}^{n} HACIN_{i}}{n} + \frac{\sum\limits_{i=1}^{n} HACII_{i}}{n}$$

where

n is the number surveyed households in the community.

HACI/CACI value	Degree of adaptive capacity
≤ 0.20	Very low
0.20 - 0.40	Low
0.41 - 0.60	Average
0.61 - 0.80	High
0.81 - 1.00	Very high

Analysis of Vulnerability

```
V_i = \alpha_0 + \alpha_1 DUM-aquaculture+ \alpha_2 DUM-vegetable+ \alpha_3 DUM-area + \alpha_4 DUM-
CauNgang + \alpha_5 DUM-TraCu + \alpha_6 Distance + \alpha_7 dependent + \alpha_8 Salinity + \alpha_9
Connection + \alpha_{10} Earning + \epsilon_{i}
where
V<sub>i</sub>: degree of vulnerability
       DUM-aquaculture: Dummy; aquaculture = 1; others = 0
DUM-vegetable: Dummy; vegetable = 1; others = 0
DUM-area: Dummy; \geq 1ha = 1; others = 0
DUM-Cau Ngang: Dummy; Huyện Ngang = 1; others = 0
DUM-Tra Cu: Dummy; Tra Cu = 1; others = 0
Distance: Distance to coastal area (km)
Dependent: dependent ratio (%)
Salinity: state of salinity (5-scale Likert: (1: abnormal, 5: normal))
Connection: Community connection (5-scale Likert: 1: very easy, 5: not easy at
all))
Earning: annual income (million VND)
       \alpha_i: estimated coefficients
          ε<sub>i</sub>: error term
```

Analysis of adaptive capacity

```
HACI<sub>i</sub> = \beta_0+ \beta_1DUM-TraCu + \beta_2DUM-area + \beta_3DUM-aquaculture
+ \beta_4 DUM-vegetable + \beta_5 Gender+ \beta_6 Education+ \beta_7 Age + \alpha_i
```

where

HACI_i: degree of adaptive of household i

DUM-TraCu: Dummy; Tra Cu = 1; others = 0

DUM-area: Dummy; ≥ 1ha = 1; others = 0

DUM-aquaculture: Dummy; aquaculture = 1; others = 0

DUM-vegetable: Dummy; vegetable = 1; others = 0

Gender: Dummy (male= 1, female= 0)

Education: head's education (schoolyear)

Age: head's age (year)

 β_i : estimated coefficients

u_i: error term.

Data collection

- For household survey, a questionnaire is designed to collect data as the evaluations on state of salinity, vulnerability, adaptive capacity, and the household behavior to the salinity.
- Study selects three study sites at Cau Ngang, Tra Cu, và Duyen Hai district of Tra Vinh province.
- In each district, some communes are randomly selected for survey. At Cau Ngang district, among 15 communes there are 6 communes selected. At Duyen Hai district, among 10 communes there are 6 communes selected. At Tra Cu district, among 17 communes there are 5 communes selected. Targeted households in the survey are rice, vegetables, and aquaculture farmers.
- As a result, there are 1,814 households interviewed.

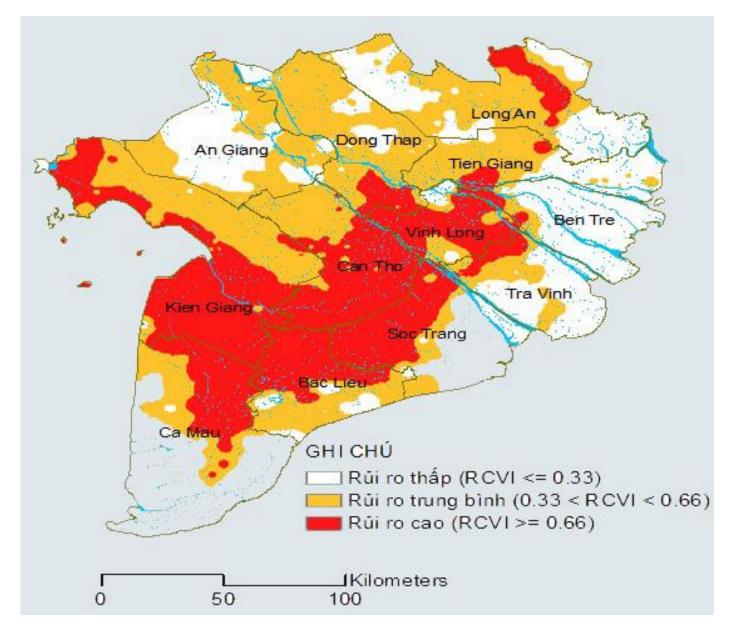
Findings & Discussion

- 1. Introduction
- 2. Methodology
- 3. Findings & Discussion
- 4. Policy Recommendation

Findings & Discussion

- 1. Salinity situation
- 2. Description of the sample
- 3. Awareness and coping to salinity
- 4. Vulnerability assessment
- 5. Assessment of adaptive capacity
- 6. Determinants of vulnerability and adaptive capacity

Salinity situation


Description of the sample

Awareness and coping to salinity

Vulnerability assessment

Assessment of adaptive capacity

Determinants of vulnerability & adaptive capacity

Map of vulnerability risk in rice production

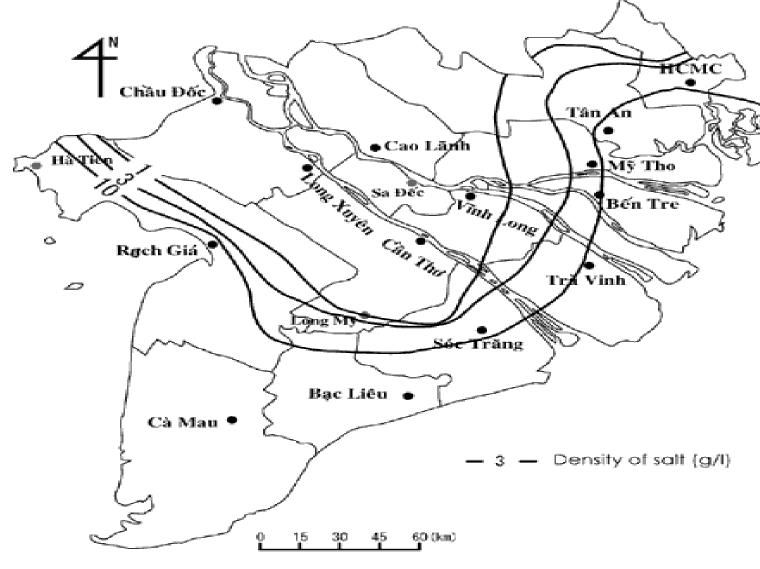


Fig. Density of salinity in surface water in Mekong Delta

Source: T.T.Be (2007)

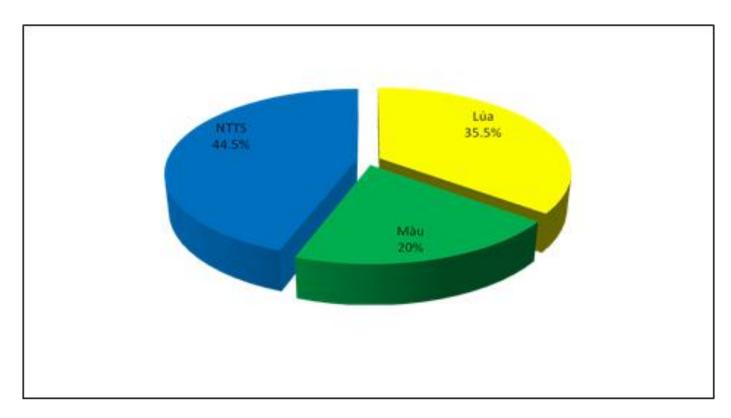
Map of salinity intrusion in the Mekong Delta

Salinity situation

- Tra Vinh has more than 90 percent of natural land salinized.
- Salinity process begins from December at Co Chien and Tra Kha branches of Hau river.
- Salinity degree gets at highest in April at Cau Quan and Vung Liem rivers.
- Sea water intrusion will be ended in June.
- Tra Vinh has six salinity-affected regions with different levels: (i) a year-round saline region with 17.7 percent, (ii) a half year saline region with 25.8 percent, (iii) a four-month saline region with 13.9 percent, (iv) a three-month saline region with 16.6 percent, (v) two-month saline region with 1.8 percent, and (vi) abnormal two-month saline region with 15.1 percent of total agricultural land area respectively.

Salinity situation

Description of the sample


Awareness and coping to salinity

Vulnerability assessment

Assessment of adaptive capacity

Determinants of vulnerability & adaptive capacity

Description of the sample

Survey 2012

Description of the sample

Variable	Unit	mean	minimum	Maximum	Standard Deviation
Head's age	Number of year	47	18	84	12
Head's gender	Male (1) Female (0)	0.77	0	1	0.42
Rice area/household	1.000m ²	7.04	1.0	50.0	5.51
Vegetable area/household	1.000m ²	4.79	0.2	40.0	4.18
Aquaculture area/household	1.000m ²	11.90	0.1	100.0	13.62
Earnings from rice/household	Million VND	18.74	0	120	18.74
Earnings from vegetable/household	Million VND	38.83	0	180	35.69
Earnings from aquaculture/household	Million VND	201.18	0	3,600	374.78
Farm size	Person	4.48	1	12	1.43
Number of person/household	Person	1.23	0	5	1.02
Annual household income	Million VND	154.74	2	3,700	279.27

Survey 2012

Salinity situation

Description of the sample

Awareness and coping to salinity

Vulnerability assessment

Assessment of adaptive capacity

Determinants of vulnerability & adaptive capacity

Awareness and coping to salinity

Household evaluation on the trend of degree of salinity

Degree of salinity	frequency (person)	percent (%)
Not at all	142	7.8
Less	249	13.7
Normal	265	14.6
More	812	44.7
Abnormal	346	19.1
Total	1,814	100.0

Awareness and coping to salinity

Household concern on high tide and salinity

	high	tide	Salinity		
Degree on concern	frequency	Percent	frequency	percent	
	(person)	(%)	(person)	(%)	
Not at all	4	0.9	36	1.9	
A little	36	7.1	192	10.6	
Normal	50	9.9	120	6.6	
More	232	46.0	784	43.2	
Very	182	36.1	682	37.6	
Total	504	100.0	1,814	100.0	

Salinity situation

Description of the sample

Awareness and coping to salinity

Vulnerability assessment

Assessment of adaptive capacity

Determinants of vulnerability & adaptive capacity

Household evaluation on changes of yields of rice, vegetable, and aquaculture

Degree of impact	Rice		Vegetable		aquaculture	
Degree of impact						
	frequency	percent	frequency	percent	frequency	percent
	(person)	(%)	(person)	(%)	(person)	(%)
Unchanged						
	272	33.7	203	31.5	58	15.9
A little						
	279	34.6	267	41.4	144	39.7
Much						
	256	31.7	175	27.1	161	44.4
Total						
	807	100.0	644	100.0	363	100.0

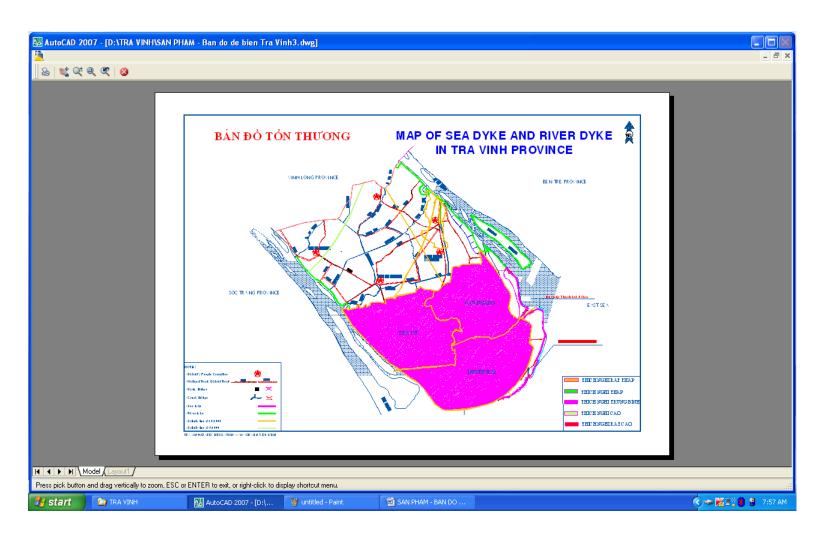
Determinants of changes in yields of rice, vegetables, and aquaculture

	Rice		veget	able	aquaculture	
Determinant	Crop 1	Crop 2	peanut	waterme lon	shrimp	Fish
Salinity	47.0	31.4	53.4	30.3	39.3	37.9
storm	3.0	0.0	1.7	0.0	1.9	3.4
Flood	0.0	2.0	0.0	0.0	0.0	0.0
Others	50.0	66.7	44.9	39.4	58.8	58.6
Total	100.0	100.0	100.0	100.0	100.0	100.0

Proportion of salinity-related vulnerable household

Degree of	Tra Vinh	Duyen	Cau	Tra Cu	u
ulnerability		Hai	Ngang		
ery low					6054.7
	49.6	54.6	47.3	41.7	50 49.6 47.3
ow	29.4	27.0	32.8	31.1	40 41.7
verage			U	3212	30 29.4 31.1
	11.0	9.2	10.1	15.4	20
ligh	3.5	3.6	4.0	3.0	9.2 9.2 10.1 3.5 4.0 ₃ 0 5.6
ery high					0
	6.5	5.6	5.8	8.8	Tổn Tổn Tổn Tổn
Total	100.0	100.0	100.0	100.0	thương rất thương thương thương rất thấp thấp trung bình cao cao

Summary of salinity-related household vulnerability


Location	VSI index	Degree of vulnerability
Tra Vinh province, in which	0.470	Average
Cau Ngang	0.466	Average
Tra Cu	0.485	Average
Duyen Hai	0.462	Average

Descriptions of the social vulnerability indices in Tra Vinh province

Component of vulnerability				Standard
	minimum	maximum	Mean	Deviation
Tra Vinh province				
Total vulnerability, in which:	0.109	1.000	0.470	0.090
Potential loss	0.000	1.000	0.273	0.347
Resilience capacity	0.133	0.702	0.453	0.117
self-recovery capacity	0.207	0.997	0.572	0.122
Duyen Hai				
Total vulnerability, in which:	0.109	0.901	0.462	0.083
Potential loss	0.000	1.000	0.316	0.345
Resilience capacity	0.177	0.637	0.426	0.123
self-recovery capacity	0.207	0.916	0.602	0.117
Cau Ngang				
Total vulnerability, in which:	0.217	1.000	0.466	0.082
Potential loss	0.000	1.000	0.256	0.386
Resilience capacity	0.133	0.702	0.461	0.111
self-recovery capacity	0.261	0.996	0.546	0.118
Tra Cu				
Total vulnerability, in which:	0.284	0.715	0.485	0.105
Potential loss	0.000	1.000	0.260	0.231
Resilience capacity	0.215	0.689	0.465	0.117
self-recovery capacity	0.327	0.997	0.594	0.125

Determinants of salinity-related household vulnerability

	Component of vulnerability		
Location	Potential	Resilience	self-
	loss	capacity	recovery
			capacity
Duyen Hai	A little	Many	Many
Cau Ngang	A little	Many	Many
Tra Cu	A little	Many	Many
Tra Vinh province	A little	Many	Many

Map of salinity vulnerability at Tra Vinh province

Salinity situation

Description of the sample

Awareness and coping to salinity

Vulnerability assessment

Assessment of adaptive capacity

Determinants of vulnerability & adaptive capacity

Household's coping measures to salinity

Measure	number o	Compared to total number of sampled households		Compared to number of households using coping measures to salinity		
	frequency percent		frequency	percent		
	(person)	(%)	(person)	(%)		
Change in crop calendar	363	20.0	363	47.7		
Maintaining the internal						
dyke, sluice systems	290	16.3	290	38.1		
Change to another crop	108	6.1	108	14.2		
Total	1,814	42.4	761	100.0		

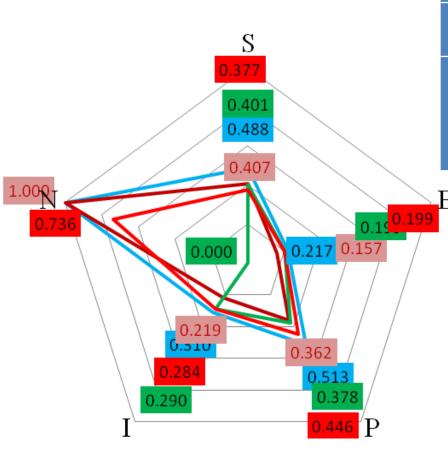
Involvement of institutional in helping farmers coping to the salinity

	Before salinity		During Salinity		After Salinity	
Institutional	frequen cy (person)	percent (%)	frequen cy (person)	percent (%)	frequen cy (person)	perce nt (%)
Women union	171	9.4	15	0.8	5	0.3
Farmer association	151	8.3	18	1.0	5	0.3
Youth union	111	6.1	18	1.0	7	0.4
Veteran union	51	2.8	0	0.0	0	0.0

Institutional' measures in helping farmers coping to the salinity

Measure	Before salinity			
	frequency		frequency	percent
	(person)	percent (%)	(person)	(%)
Informing the crop calendar	265	14.6	0	0.0
Repairing the dyke	76	4.2	40	2.2
Technical supporting (credit, seed,				
)				
	102	5.6	9	0.5

Household evaluation on community-based measures to coping with the salinity

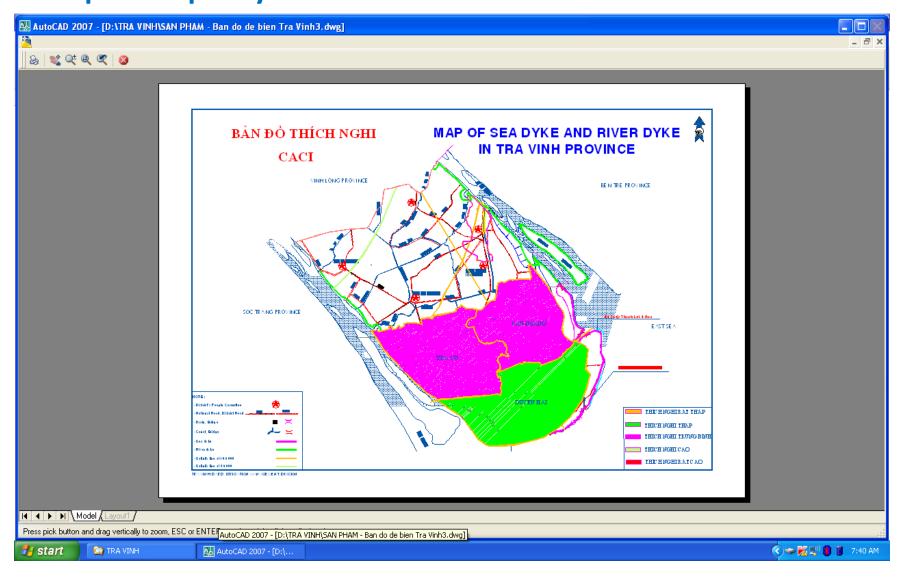

Degree of ease of finding the salinity-resistance		
measure	frequency	percent
	(person)	(%)
Not easy at all	33	1.8
A little	370	20.4
Average	654	36.0
Easy	659	36.3
Very easy	98	5.4
Total	1,814	100.0

Household adaptive capacity (HACI)

Degree of adaptive	frequenc				
	У	perce	nt		
	(person)	(%)	60	54.7	
Very low	27	1.5	50	49.6 47.3	
Low	435	24.0	40	41.7	
Average	1,152	63.4	30	29.4 31.1	■ Trà Vinh
High	200	11.0	20	11 15.4	■ Duyên Hải ■ Cầu Ngang
Very high	0	0.0	10	9.2 6.5 8.8 10.1 3.5 4.0 _{3.0} 5.6	■ Trà Cú
Total	1,814	100.0	0	3.6 5.8	
				Tổn Tổn Tổn Tổn Tổn thương rất thương thương rất thấp thấp trung bình cao cao	

Community-based adaptive capacity (CACI)

	Adaptive component					
Location		_	51			CACI
Location	Social	Econom	Physical	Institutio	Natural	
	(S)	ic (E)	(P)	nal (I)	(N)	
Cau Ngang	0.488	0.217	0.513	0.310	0.939	0.542
Tra Cu	0.407	0.157	0.362	0.219	0.977	0.438
Duyen Hai	0.473	0.215	0.400	0.274	0.021	0.317
Tra Vinh						
province	0.377	0.199	0.446	0.284	0.736	0.468


Commune	Component						
	(S)	(E)	(P)	(1)	(N)		
Duyen Hai	High	Low	High	Low	Low		
Cau Ngang	High	Low	High	Low	High		
Tra Cu	High	Low	Low	Low	High		
Tra Vinh province	High	Low	High	Low	High		

— CẦU NGANG — TRÀ CÚ

— DUYÊN HẢI

—TÌNH

Map of community-based adaptive capacity

Salinity situation

Description of the sample

Awareness and coping to salinity

Vulnerability assessment

Assessment of adaptive capacity

Determinants of vulnerability & adaptive capacity

Determinants of vulnerability

- aquaculture, farm size,
 community connection, and
 household income had
 negative impacts on the degree
 of vulnerability.
- location, depedent ratio, and status of salinity had positive impacts on the degree of vulnerability.
- no significant difference in the degree of vulnerability between Duyen Hai and Cau Ngang
- But, significant difference in the degree of vulnerability between Duyen Hai and Tra Cu.

hv	Variable	Value of variable	Estimated
L y			coefficient
	Constant coefficient		0.5240
	DUM-aquaculture	aquaculture = 1; other = 0	-0.0160**
			(0.0150)
	DUM-vegetable	vegetable = 1; other = 0	-0.00007 ns
			(0.9920)
	DUM-Area	≥ = 1; other = 0	-0.0140**
			(0.0370)
	DUM-Cau Ngang	Cau Ngang = 1; other = 0	0.0020 ns
			(0.8230)
	DUM-Tra Cu	Tra Cu = 1; other = 0	0.0290*
			(0.0000)
	Distance	Distance to coastal area(km)	0.0010 ns
			(0.3010)
	Dependent	dependent ratio (%)	0.1320*
			(0.0000)
	Salinity	Degree of salinity (1: abnormal, 5:	0.0070*
		normal)	(0.0030)
	Connection	Community connection(1: very	-0.0220*
		easy, not easy at all)	(0.0000)
	Fourings	Annual income (Million VND)	-0.00005*
	Earnings	Allitual income (Willion VND)	-0.00005
			(0.0000)

Determinants of adaptive capacity

_	farm size, location, type of
	farming system, household
	head's gender, and education
	had statistically significantly
	impacts on the household's

adaptive capacity to the salinity

Consta DUM-DUM-

DUM-vegetable

DUM-Gender

Education

Age

Variable

Constant coefficient	
DUM-Tra Cu	Dummy;
	Tra Cu = 1; other = 0
DUM-Area	Dummy;
	≥ 1ha = 1; other = 0
DUM-aquaculture	Dummy;

(0.0000)
0.00002 ns
(0.4700)
0.0010**
(0.0660)
0.0010*
(0.0000)
0.00002 ns

(0.01880)

Estimated

coefficien

0.0010

 0.0020^*

(0.0000)

0.0010**

(0.0170)

 0.0020^*

- Dummy;
 - Fra Cu = 1; other = 0Dummy;

aquaculture = 1; other = 0

Dummy; vegetable = 1;

gender (Nam = 1, $N\tilde{v}$ = 0)

Head's education (number

Head's age (number of

other = 0

of year)

year)

Value of variable

policy recommendation

- 1. Introduction
- 2. Methodology
- 3. Findings & Discussion
- 4. Policy Recommendation

policy recommendation

- Public awareness raising
- Community connection
- Structures and technologies
- Production adjustment
- Socio-economic measures

more.....

- Integration of Climate Change into Masterplan
- Vulnerability Assessment & Agriculture and Rural Development Plan
 - ✓ District vs. Commune vs. Province
- Different measures of vulnerability index
 - ✓ Standardization
 - ✓ Social index vs. technical index
 - ✓ Weight-related problems

Thank you.