Measurement Of Carbon Dioxide In Corn Cob Biochar-amended Acid Soil Added With Different Types Of Fertilizers

ARSENIO D. BULFA, JR. MS SOIL SCIENCE

What we will learn...

- Why biochar?
- CO2 sequestration
- CO2 evolution trends
- Effect in the environment

What is Biochar?

- Biochars are new, carbonrich materials that could sequester carbon in soils
- Improves soil properties and agronomic performance
- Inspired by investigations of Terra Preta in Amazon.

Glaser, B., Wiedner, K., Seelig, S., Schmidt, H. P., & Gerber, H. (2015). Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agronomy forSustainable Development, 35(2), 667-678.

Biochar

 The pyrolysis conversion of waste biomass into biochar is particularly attracting attention for the following two reasons.

-it can be used as a soil amendment for improving soil quality and,
-storing biochar in soils is regarded as a mean for permanently sequestering carbon.

Glaser, B., Wiedner, K., Seelig, S., Schmidt, H. P., & Gerber, H. (2015). Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agronomy forSustainable Development, 35(2), 667-678.

Biochar

- environment-related benefits linked with biochar
- rehabilitation of degraded lands,
- reduced GHG emissions,
- adsorption of contaminants to offset streams, and groundwater pollution are among the
- It is well documented that biochar application into soil can reduce the emission of CO2, CH4, and N2O

Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A. M., Solaiman, Z. M., Alghamdi, S. S., ... & Siddique, K. H. (2016). Biochar for crop production: potential benefits and risks. Journal of Soils and Sediments, 1-32.

What is biochar?

Biochar is a highly porous material made from organic waste Can be any forest, agricultural, or animal waste

Examples: Woodchips Corn husks Peanut shells Chicken manure

Tian, Y., Sun, X., Li, S., Wang, H., Wang, L., Cao, J., & Zhang, L. (2012). Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. Scientia Horticulturae, 143, 15-18.

More about biochar..

- Biochar is a carbon-rich solid material produced by heating biomass in an oxygenlimited environment
- Intended to be added to soils as means to sequester carbon(C) and maintain or improve soil functions.
- It is produced after pyrolysis of biomass, typically within a temperature range of 300°C to 800 °C.

Van der Stelt, M. J. C., et al. "Biomass upgrading by torrefaction for the production of biofuels: A review." Biomass and bioenergy 35.9 (2011): 3748-3762.

Are all biochars the same?

Biochar and Agriculture

Lehmann, J., da Silva Jr, J. P., Rondon, M., Cravo, M. D. S., Greenwood, J., Nehls, T., ... & Glaser, B. (2002, August). Slash-and-char-a feasible alternative for soil fertility management in the central Amazon. In Proceedings of the 17th World Congress of Soil Science (pp. 1-12).

Biochar and Agriculture

Gasifier Inno-technology for Negative Carbon Production (GIN-P) pyrolytic cook stove

Benefits of Biochar

Bates, A. (2010). The biochar solution: carbon farming and climate change. New Society Publishers.

1. 28

Sohi, S., Lopez-Capel, E., Krull, E., & Bol, R. (2009). Biochar, climate change and soil: A review to guide future research. CSIRO Land and Water Science Report, 5(09), 17-31.

Biochar and CO2 Sequestration

 biochar is a highly stable form of carbon and as such has the potential to form an effective C sink, therefore sequestering atmospheric CO2.

Sohi, S., Lopez-Capel, E., Krull, E., & Bol, R. (2009). Biochar, climate change and soil: A review to guide future research. CSIRO Land and Water Science Report, 5(09), 17-31.

This experiment was conducted to give a close attention to the Effect Corn Cob Biochar on the Rate of Carbon Sequestration in Red Acidic Soil

-compare the CO2 evolution trends of all treatments

-compare the sequestration rates

Materials and Methods Preparation of Treatments

```
Treatments are as follows:
Treatment 1: Control (soil alone)
Treatment 2: T1 + biochar (10t/ha)
Treatment 3: T1 + Gliricidia sepium leaves
Treatment 4: T3 + biochar (10t/ha)
Treatment 5: T1 + rice straw
Treatment 6: T5 + biochar (10t/ha)
Treatment 7: T1 + inorganic fertilizer
Treatment 8: T7 + biochar (10t/ha)
Treatment 9: T1 + organic fertilizer (5t/ha)
Treatment 10: T9+ biochar (10t/ha)
```

Materials and Methods Determination of Carbon Dioxide Evolution

Materials and Methods Determination of Carbon Dioxide Evolution

Materials and Methods Duration and Titration Schedule

 Titration was done in 2, 5, 7, 14, 21 and 28 days interval respectively.

Materials and Methods Determination of Carbon Dioxide Evolution

Results were expressed as mg carbon dioxide produced per 100 grams soil. The formula used in calculating the carbon dioxide evolved was:

 $mg of CO_2 = (\underline{B-V}) \times 22 \times N \times 2$ T

where:

V = Volume (mL) of acid used to titrate B = Volume (mL) of acid used to titrate the CO_2 trap to the end point

N = Normality of the acid

T = Time (in days)

22 = weight of 1 meq CO_2 in mg

Results

Chemical Properties of Luisiana Clay

Property	Value
рН	4.68
EC (mS/cm	0.049
N (% OM)	2.75 (M)
P (ppm)	6.24 (L)
K (meq/100g soil)	0.08 (D)

L = Low M = Medium H = High D = Deficient S = Sufficient

Results

1. 3

Chemical Properties of Corn Cob Biochar

Property	Value
N (%)	1.29
P (%)	0.67
K (%)	2.70
Ca (%)	0.22
Mg (%)	0.51
Fe (ppm)	1024
Zn (ppm)	220
Cu (ppm)	14
Mn (ppm)	85

Energy Dispersive Spectroscopy (EDS) For Transmission Electron Microscope(TEM)

Corn Cob Biochar Surface Area

<u>Analysis</u> Operator: Sample ID: Sample Desc: Sample weight: Outgas Time: Analysis gas: Press. Tolerance: Analysis Time: Cell ID:	quantachrome corn cob black powder 0.1192 g 3.0 hrs Nitrogen 0.100/0.100 (ads/des) 56.1 min 9	Date:2017/03/29 Filename: Comment: Sample Volume: Outgas Temp: Bath Temp: Equil time: End of run:	Report Operator: quantachr CORN COB SA.qps Surface Area Analysis 0.03056 cc 300.0 C 273.0 K 60/60 sec (ads/des) 2017/03/29 20:07:10	Ichrome Date:2017/03/28 Equil timeout: 240/240 sec (ads/des) Nova Station B			
		Multi-P					
			Parameters Data				
<u>Adsorbate</u>	Nitrogen Molec. Wt.: 28.01	Temperature 3 Cross Section	77.350K 16.200 Ų	Data Liquid Density: 0.808 g/cc			
[Multi-Poin	t BET Data ——	Liquid Density: 0.808 g/cc			
Relative	Volume @ STF	P 1 / [W((Po/P) - 1)]	Relative	Instrument: Nova Station B Data Liquid Density: 0.808 g/cc Volume @ STP 1 / [W((Po/P) - 1)] [cc/g] -01 2.5875 7.9030e+01 -01 2.8317 9.6392e+01 -01 3.0191 1.1576e+02			
[P/Po]	[cc/g]		[P/Po]	[cc/g]			
5.03120e- 1.00989e- 1.51140e-	021.2068.011.8962.012.2726	3.5124e+01 4.7399e+01 6.2686e+01	2.03551e-01 2.54369e-01 3.04006e-01	2.5875 2.8317 3.0191	7.9030e+01 9.6392e+01 1.1576e+02		
		B Slope = Intercept = Correlation coefficient, r C constant= Surface Area =	ET summary = 318.036 = 1.631e+01 = 0.997370 = 20.495 = 10.416 m²/g				

Corn Cob Biochar Pore Radius

Analysis Operator: Sample ID:	quantachrome	Date:2017/03/28	Report Operator: quantachrome CORN COB aps	Da	te:2017/03/28
Sample Desc: Sample weight: Outgas Time: Analysis gas: Press. Tolerance: Analysis Time: Cell ID:	black powder 0.1192 g 3.0 hrs Nitrogen 0.100/0.100 (ads/des) 228.6 min 9	Comment: Sample Volume: Outgas Temp: Bath Temp: Equil time: End of run:	Pore Size Analysis 0.03056 cc 300 0 C 273.0 K 6080 scc (ads/des) 2017/03/28 18.46.32	Equil timeout: Instrument;	240/240 sec (ads/des) Nova Station B

BJH Pore Size Distribution Desorption

		Data Reduction Par	ameters Dat	a	
t-Method BJH/DH method Adsorbate	Calc. method: de Boer Moving pt. avg.: off Nitrogen Molec. Wt.: 28.013	Ignoring P-tags bel Temperature Cross Section:	ow 0.35 P/Po 77.350K 16.200 A	Liquid Density:	0.806 g/cc

-BJH Pore Size Distribution Desorption Data

Radius	Pore Volume	Pore Surf	dV(r)	dS(r)	dV(logr)	dS(logr)
(Å)	[cc/g]	[m ⁴ /g]	[cc/A/g]	[m*/A/g]	[cc/g]	[oc/g]
15.3340 17.1328 19.1571 21.4952 24.3733 26.0031 32.5185 38.6763 34.7.4358 61.3496 80.2346 151.6766 338.4459 728.6082	0.0000e+00 0.0000e+00 1.1265e-04 1.1265e-04 1.265e-04 1.1265e-04 1.1265e-04 1.1265e-04 1.1265e-04 1.1265e-04 1.265e-04 1.265e-04 1.2752e-04 5.0640e-04 1.3753e-03 1.9576e-03	0.0000e+00 0.0000e+00 0.0000e+00 1.0483e-01 1.0483e-01 1.0483e-01 1.0483e-01 1.0483e-01 1.0483e-01 1.0483e-01 1.0483e-01 1.1530e-01 2.1450e-01 2.1450e-01	0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1.7538e-06 3.6329e-05 3.6329e-05 1.1635e-05	0.0000e+00 0.0000e+00 4.1657e-02 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 4.0600e+04 4.7935e-04 1.8207e-04 3.1935e-04	0.0000e+00 0.0000e+00 2.2134e-03 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3.5928e-04 1.2293e-03 2.2542e-03 1.8739e-03	0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 8.1440e-02 1.6221e-01 1.3320e-01 5.1437e-02

BJH desorptio
Surface Area = Pore Volume =
Pore Radius Dv(r) =

Results

Cumulative CO_2 evolution during the decomposition of organic materials with and without added biochar.

Results

1 2

Treatments

Total CO₂ evolved after 28 days incubation period.

Results and Discussion

Results such as these showed that biochar addition can capture C into the soil even in short period of time and confirmed its use in the long term storage of atmospheric CO_2 that may mitigate or defer global warming.

Conclusion

The addition of biochar with organic and inorganic fertilizers in an acidic red soil showed a decrease of CO_2 evolution in the soil.

Findings such as these can be assumed that incorporated biochar helps to capture CO_2 when added into the soil.

Measurement of Carbon Dioxide in Corn Cob Biochar-amended Acid Soil Added with Different Types of Fertilizers

