

Global Status of Commercialized Biotech/GM Crops : 2016

Los Banos, Philippines May 19, 2017

Prof. Paul Teng Chairman of the Board, ISAAA

International Service for the Acquisition of Agri-biotech Applications

Overview of Presentation

- Biotech crop adoption in 2016
- Impact (1996-2015)
- Future Prospects (2016 and beyond)

Biotech Crop Adoption in 2016

Countries with Close to or Over 90% Major Biotech Crop Adoption

- Biotech soybean USA, Brazil, Argentina, Canada, South Africa, and Uruguay
- Biotech maize USA, Brazil, Argentina, Canada, South Africa and Uruguay

- **Biotech cotton** USA, Argentina, India, China, Pakistan, South Africa, Mexico, Australia, and Myanmar
- Biotech canola USA and Canada

Global Area of Biotech Crops, 1996 to 2016: Industrial and Developing Countries (Million Hectares, Million Acres)

- Resumes high adoption at 185.1 million hectares
- ~110-fold increase from 1996
- 2.1 billion accumulated hectarage

ISAAA, 2016

Global Area of Biotech Crops, 2016: By Country (Million Hectares)

		50,000 hectares, or more	
	26 countries which have adopted biotech crops	 USA Brazil* Argentina* Canada India* Paraguay* Pakistan* China* South Africa Uruguay* Bolivia* Australia Philippines' Myanmar* Spain Sudan* Mexico* 	72.9 million 49.1 million 23.8 million 11.6 million 3.6 million 2.9 million 2.8 million 2.8 million 1.3 million 0.9 million 0.9 million 0.3 million 0.1 million 0.1 million 0.1 million
3% Increase from 2015	crops was 185.1 million hectares, representing an increase of 3% from 2015, equivalent to 5.4 million hectares. Source: ISAAA, 2016.	Less than S Vietnam* Honduras* Chile* Portugal	0,000 hectares Bangladesh* Costa Rica* Slovakia Czech Republic Developing countries

• Top five countries: 3 Dev countries (Brazil, Argentina, and India) and 2 Industrial countries (USA and Canada) grew 91% of biotech crops

DISTRIBUTION OF BIOTECH CROPS IN DEVELOPING AND INDUSTRIAL COUNTRIES IN 2016

Source: ISAAA, 2016

Global Area of Biotech Crops, 2016: By Country (Million Hectares)

26 countries which	h have adop	ted biotech crop	S
--------------------	-------------	------------------	---

In 2016, global area of biotech crops was 185.1 million hectares, representing an increase of 3% from 2015, equivalent to 5.4 million hectares.

Source: ISAAA, 2016.

3%

Increase

from 2015

50,000 hectares, or more

1.	USA	72.9 million
2.	Brazil*	49.1 million
3.	Argentina*	23.8 million
4.	Canada	11.6 million
5.	India*	10.8 million
6.	Paraguay*	3.6 million
7.	Pakistan*	2.9 million
8.	China*	2.8 million
9.	South Africa*	2.7 million
10.	Uruguay*	1.3 million
11.	Bolivia*	1.2 million
12.	Australia	0.9 million
13.	Philippines*	0.8 million
14.	Myanmar*	0.3 million
15.	Spain	0.1 million
16.	Sudan*	0.1 million
17.	Mexico*	0.1 million
18.	Colombia*	0.1 million

Less than 50,000 hectares

Vietnam*	Bangladesh*
Honduras*	Costa Rica*
Chile*	Slovakia
Portugal	Czech Republic

* Developing countries

Biotech Crop Countries and Mega-Countries*, 2016

*18 biotech mega-countries growing 15,000 hectares, or more, of biotech crops.

Biotech Crops and Area Grown in the Region

Region	Countries	Biotech Area	Crops Planted
North America	USA and Canada	84.5 M Ha	Maize, soybean, cotton, canola, sugar beet, alfalfa, ppaya, squash, potato
Latin America	Brazil, Argentina, Paraguay, Uruguay, Bolivia, Mexico, Colombia, Honduras, Chile, Costa Rica	~ 80 M Ha	Soybean, maize, cotton, pineapple
Asia and the Pacific	India, Pakistan, China, Australia, Philippines, Myanmar, Vietnam, Bangladesh	~ 18.6 M Ha	Cotton, maize, canola, eggplant
European Union	Spain, Portugal, Slovakia, Czech Republic	>136,000 Ha	Maize
African continent	South Africa and Sudan	~ 2.8 M Ha	Maize, soybean, cotton

Global Adoption Rates (%) for Principal Biotech Crops (Million Hectares, Million Acres), 2016

Global Area of Biotech Crops, 1996 to 2016: By Crop (Million Hectares, Million Acres)

• Biotech soybean reached 50% of global biotech crop hectarage

ISAAA, 2016

Global Area of Biotech Crops, 1996 to 2016: By Trait (Million Hectares, Million Acres)

- Herbicide tolerance at 47% and
- Stacked traits occupied 41% of the global hectarage

ISAAA, 2016

Impact (1996-2015)

Contribution of Biotech Crops to Food Security, Sustainability and Climate Change

INCREASING CROP PRODUCTIVITY

US\$167.8 BILLION

FARM INCOME GAINS IN 1996-2015 GENERATED GLOBALLY BY BIOTECH CROPS

CONSERVING BIODIVERSITY

IN 1996-2015, PRODUCTIVITY GAINED THROUGH BIOTECHNOLOGY SAVED 174 MILLION HECTARES OF LAND FROM PLOUGHING & CULTIVATION

Source: Brookes and Barfoot, 2017 Forthcoming

Contribution of Biotech Crops to Food Security, Sustainability and Climate Change

PROVIDING A BETTER ENVIRONMENT REDUCED PESTICIDE SPRAYING

DECREASED ENVIRONMENTAL IMPACT FROM HERBICIDE & INSECTICIDE USE BY **19%** IN 1996 - 2015

REDUCING CO2 EMISSIONS

IN 2015, 26.7 BILLION KGS CO2 SAVED EQUIVALENT TO REMOVING
~12 MILLION CARS OFF THE ROAD FOR 1 YEAR

Source: Brookes and Barfoot, 2017 Forthcoming

Contribution of Biotech Crops to Food Security, Sustainability and Climate Change

HELPING ALLEVIATE POVERTY & HUNGER

BIOTECH CROPS BENEFITED 18 MILLION SMALL FARMERS AND THEIR FAMILIES IN 2016 TOTALING >65 MILLION PEOPLE

Source: ISAAA, 2016

Percent of net food imports over domestic supply

Source: FAO Global Perspectives Studies, using 2011 food balance sheets from FAO, 2016a.

Source: The Future of Food and Agriculture. FAO, UN. February 2017

CROP "YIELD GAPS"

Average crop yields 2013, t/ha

do	Country	Food status	Maize	Soybeans
	U.S.A.	Exporter	9.97	2.9
rietie	Canada	Exporter	8.9	2.9
echr vai	Argentina	Exporter	6.6	2.5
Biot	China	Importer	6.1	1.9

Sources: FAO Statistics; USDA FAS

Farmers' Record Yields

Corn	22.3 t/ha (Rainfed)	Chile
	26.8 t/ha (Irrigated)	Chile
Soybean	10.8 t/ha	MO, US
Wheat	15.5 t/ha	NZ
Rice	18.0 t/ha	China

From: Fisher, Edmeades & Byerlee, 2013

Biotech crops provide more diverse offerings to consumers in 2016

New Biotech Crops and Traits Commercialized in 2016 and Pending in 2017

	Crop	Trait	Country	Hectares
1	Alfalfa	HarvXtra [™] low lignin	USA	20,000
			Canada	800
2	Apples	Golden Delicious and Granny Smith Arctic [®] Apples, Non-browning	USA	~ 81
3	Pineapple	High Anthocyanin	Costa Rica	~15
4	Soybean	Herbicide tolerant	Brazil*	2017
5	Bean	Virus resistant	Brazil*	2017

*Approved in 2015, estimated planting in 2017

"New" Biotech Crop Approvals in 2016

	Crop	Trait	Country
1	Potato	Innate [™] Gen 2 = Non- bruising, less browning, less acrylamide, lowered reducing sugars, plus late blight resistance	USA
2	Potato	Innate [™] Gen 1 = Non- bruising, less browning, less acrylamide, reduced levels of reducing sugar	Canada
3	Apples	Arctic [®] Fuji, Non-browning	USA

Status of Approved Events for Biotech Crops Used in Food, Feed, and Processing

ISAAA, 2016

EU = 28 countries

Statement of Support

- 123 Nobel Laureates supported biotechnology and condemned critics
- International bodies: UN FAO, IFPRI, G20 to eradicate hunger and malnutrition in 16 years or less through modern tools of plant breeding
- US National Academies of Sciences, Engineering and Medicine reported that GM crops are as safe or safer than conventional crops

Future Prospects

- Expansion of global GM crop area
- New biotech crops and traits in the pipeline
- The potential of New Breeding Techniques such as genome editing CRISPR technology in variety development
- Application of science-based and efficient GM crop regulation

Expansion of GM Crop Area

Substantial potential for selected products remain

• At least an additional 100 million hectares for **biotech maize**: 60 million Ha in Asia, with 35 M Ha in China alone, and up to 35 M Ha, in smaller parcels in Africa.

- **Bt cotton** potential in up to 10 African countries each growing 100,000 hectares or more
- Potential **biotech potato** area of 5.6 to 7 million hectares in 2020 in China

New biotech crops and traits in the pipeline

News Flash! 15 May 2017

Biotech regulatory committee approves commercial release of GM Mustard

The GM Mustard seeds will be released for sowing after the environment ministry approves it......Hindustan Times. Updated: May 11, 2017 20:02 IST

Developed by Delhi University's Centre for Genetic Manipulation of Crop Plants (CGMCP)

Potential of New Breeding Technologies

CRISPR, TALENs, Zinc Finger Nucleases

Capability – Ability to edit native crop genes coding for important traits and generating non-transgenic plants

Four Comparative Advantages over Conventional/GM

- **1. Precision** more precise, similar to natural mutations, no new material inserted in the genome
- **2. Regulation –** science-based, fit-for-purpose, proportionate and non-onerous regulation several countries have classified genome-edited as non-GM
- 3. Speed substantially faster

4. Cost – faster-speed and less onerous regulation translates to significant cost savings

• Genome-edited crops being improved include, soybean, maize, wheat, rice, potato, tomato, and peanuts

Enabling country and global regulations are essential

Technology in conjunction with conducive policies can double food production

February 2017

The future of food and agriculture

Trends and challenges

 Regulation should be science/evidence based, fit for purpose, and harmonized globally

The Future of food and Agriculture. FAO. 2017 TRENDS

- 1 Population growth, urbanization and ageing
- 2 Global economic growth, investment, trade and food prices
- 3 Competition for natural resources
- 4 Climate change
- 5 Agricultural productivity and innovation
- 6 Transboundary pests and diseases
- 7 Conflicts, crises and natural disasters
- 8 Poverty, inequality and food insecurity
- 9 Nutrition and health
- **10** Structural change and employment
- **11** Migration and agriculture
- 12 Changing food systems
- 13 Food losses and waste
- 14 Governance for food and nutrition security
- **15** Development finance

RSIS SCHOOL OF INTERNATIONAL STUDIES

RSIS COMMENTARY

www.rsis.edu.sg

No. 047 - 20 March 2017

Future of Food

Feeding Asia: How Should the Region Respond to Production Challenges?

By Paul Teng and Christopher Vas

Future of Food

Download from www.rsis.edu.sg

Securing the Feeding of Asia: Policy Recalibration Needed

By Paul Teng and Christopher Vas

BRIEF 52

EXECUTIVE SUMMARY

Global Status of Commercialized Biotech/GM Crops: 2016

Thank you

https://www.isaaa.org/resources/publications/briefs/52/executivesummary/pdf/B52-ExecSum-English.pdf