

Assessing vulnerability of fisheries in the Philippines to Climate Change Impacts Tool for Understanding Resilience of Fisheries (VA-TURF)

Remelyn I. de Ramos The Marine Science Institute University of the Philippines Diliman Email: rideramos@msi.upd.edu.ph

SEARCA Agricultural Development Seminar Series 10 March 2015

OUTLINE

Introduction

- \odot Climate Change
- $\,\circ\,$ Impacts of Climate Change to Fisheries

$\,\circ\,$ Significance of the study

- Philippines as a vulnerable country
- \circ Status of Coral Reefs and Fisheries
- Tool for Understanding Resilience of Fisheries (VA-TURF)
- Case study
- o Summary

CO

H10 + CO

Storm Surge

CLIMATE CHANGE

Acidification

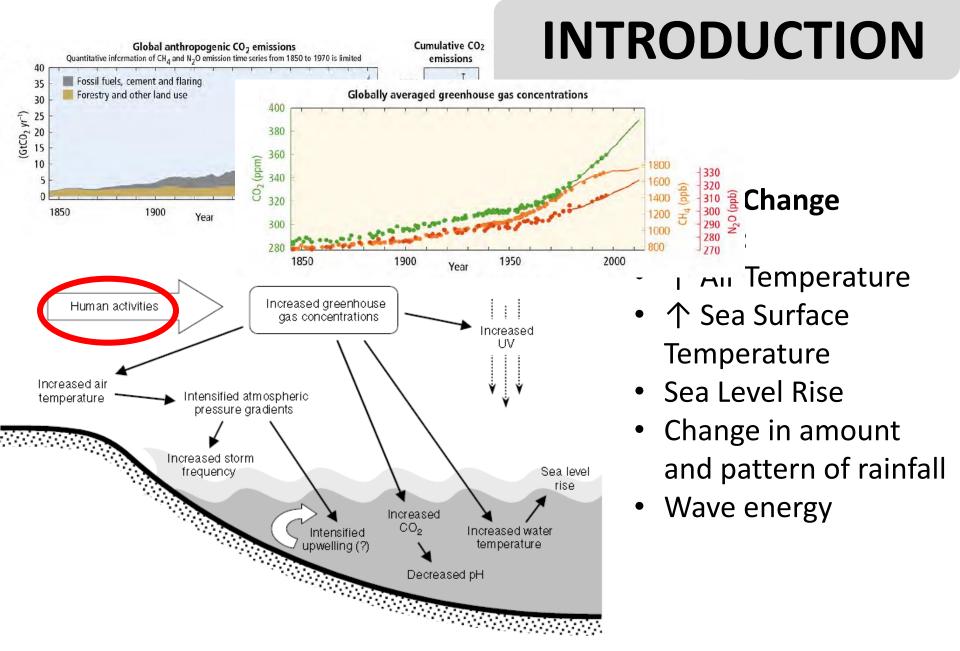
tion of carbonate ions impedes calcification

CO; absorbed from th

Typhoons

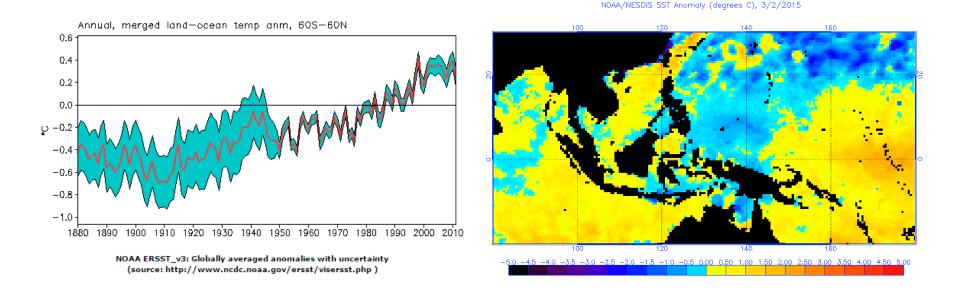
Global Warming

CLIMATE CHANGE


-any **significant change** in the measures of climate lasting for an extended period of time

-temperature-precipitation-wind patterns

Global Warming

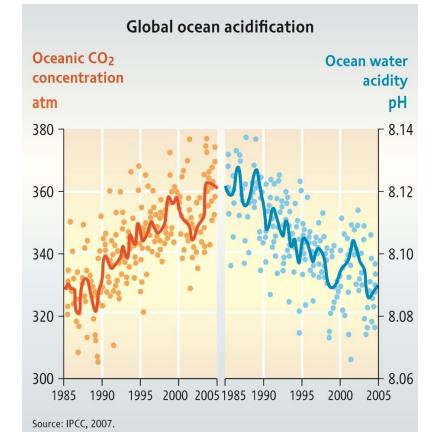

-recent and ongoing rise
in global average
temperature caused
mostly by increase in
concentration of
greenhouse gases in
the atmosphere

-only represents one aspect of climate change

Source: Harley CDG et al.,(2006). The impacts of climate change in coastal marine systems. Ecology Letters 9:228-241 | IPCC Climate Change 2014 Synthesis Report

Sea Surface Temperature (SST)

- Global average SST increased
 - Pacific Ocean increased by 0.31°C from 1950-2009^a
 - Philippines increased by 0.64°C from 1951-2010^b


Source: Huang et al (2014). The Climate Data Guide: SST data: NOAA Extended Reconstruction SSTs, Version 3 (ERSSTv3&3b)| www.coralreefwatch.noaa.gov | a Hoegh-Guidberg et el., 2014. The Ocean | b www.pagasa.dost.gov.ph

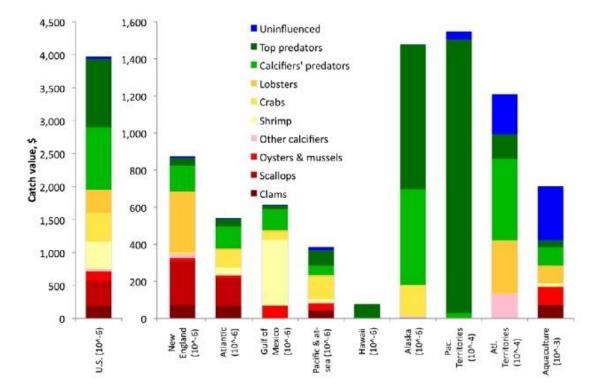
IMPACTS OF CLIMATE CHANGE TO FISHERIES

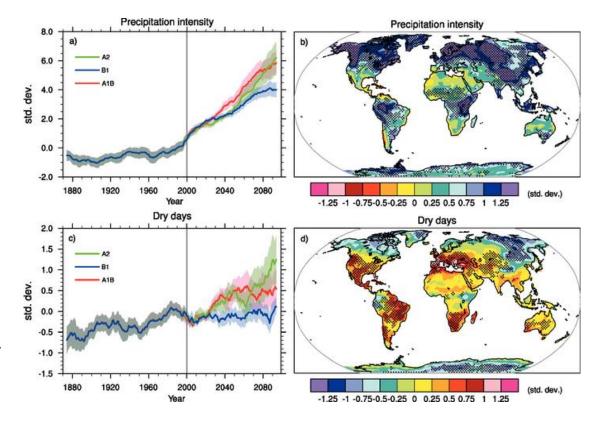
Type of change	Climatic variable	Impacts	Potential Impacts to Fisheries
Fish stocks	High SST	Change in physiology and sex ratios of fished species	Changes in timing and levels of productivity across marine and freshwater systems
		Altered timing of	Deduced are duction of
		spawning, migrations, and/or peak abundance	Reduced production of target species
		Increased invasive species, diseases and	
		algal blooms	

Ocean Acidification/ Decrease in ocean pH

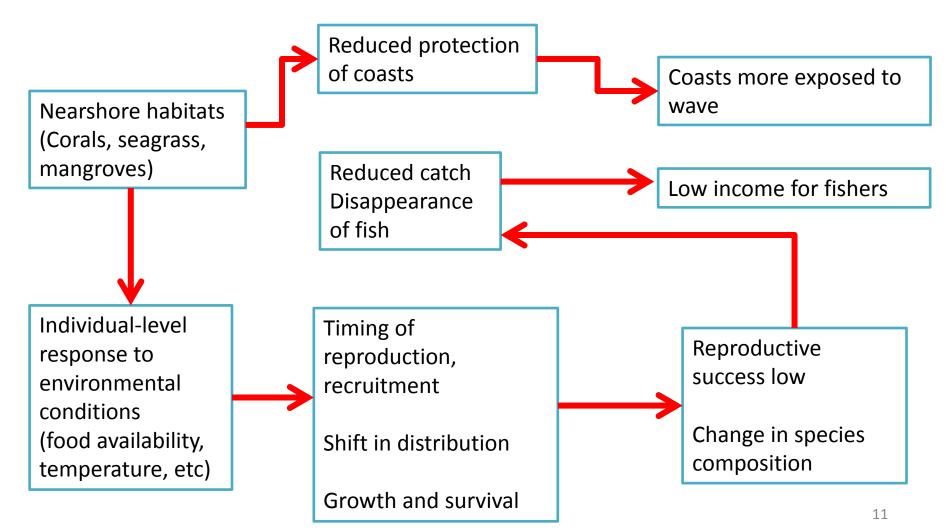
- CO₂ uptake has decreased ocean pH
 - Implications on biology of organisms (reproduction, growth, neural functions, etc.) and ecosystem processes (reef building, primary productivity, etc.)

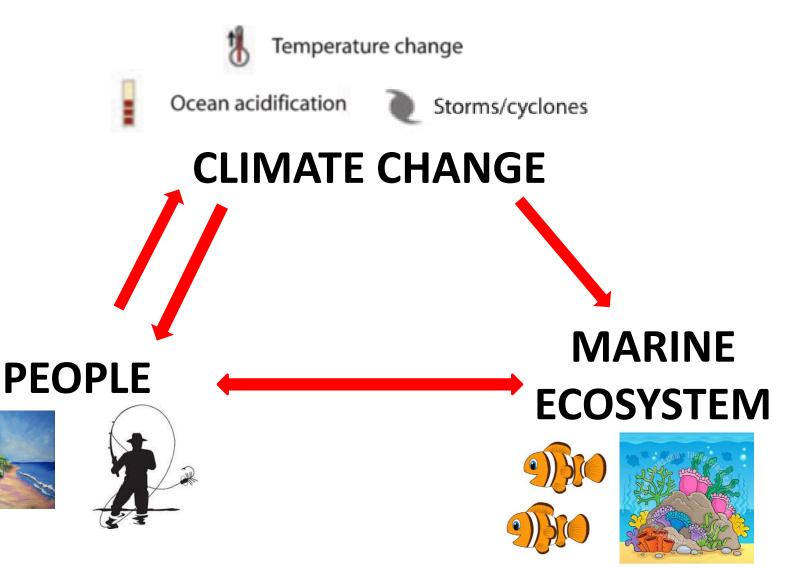
Ocean Acidification/ Decrease in ocean pH




Figure 2. US commercial fishing ex-vessel revenue for 2007 (NMFS statistics, accessed October 2008). Reds indicate organisms containing primarily aragonite, yellows indicate those using primarily calcite, greens indicate predators, and blue indicates species not directly influenced by ocean acidification. (NMFS statistics and Andrews *et al* 2008.)

Change in frequency and intensity of rainfall


 Global annual land mean precipitation showed small but upward trend over the century,

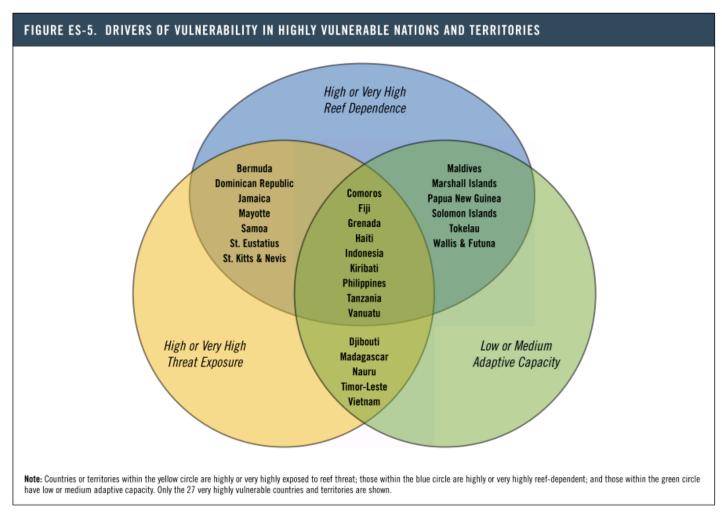

~ 1.1 mm per decade ^a

 In Philippines, increasing trend in frequency and intensity of extreme rainfall observed ^b

IMPACTS OF CLIMATE CHANGE TO FISHERIES

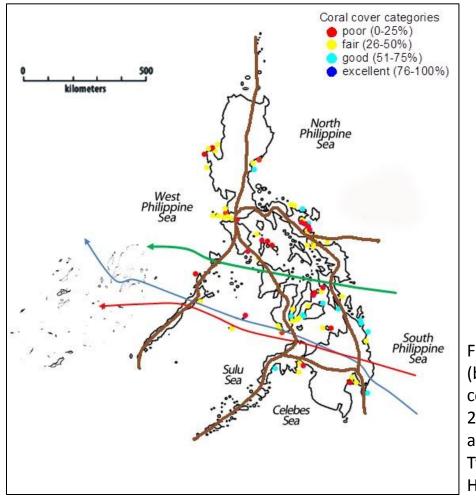
PHILIPPINES: A VERY VULNERABLE COUNTRY

CRI 1993- 2012 (1992- 2011)	Country	CRI score	Death toll	Deaths per 100,000 inhabitants	Total losses in million US\$ PPP	Losses per unit GDP in %	Number of Events (total 1993– 2012)
1 (1)	Honduras	10.17	329.80	4.86	667.26	2.62	65
2 (2)	Myanmar	11.83	7135.90	13.51	617.79	1.20	38
3 (5)	Haiti	16.83	307.50	3.45	212.01	1.73	60
4 (3)	Nicaragua	17.17	160.45	2.81	224.61	1.74	44
5 (4)	Bangladesh	19.67	816.35	0.56	1832.70	1.16	242
6 (6)	Vietnam	24.00	419.70	0.52	1637.50	0.91	213
7 (14)	Philippines	31.17	643.35	0.79	736.31	0.29	311
B (10)	Dominican Republic	31.33	212.00	2.43	182.01	0.32	54
B (12)	Mongolia	31.33	12.85	0.52	327.38	3.68	25
10 (9)	Thailand	31.50	160.35	0.26	5410.06	1.29	193
10 (11)	Guatemala	31.50	82.35	0.69	312.23	0.58	13 72


Image credit: Kreft,S. and Eckstein,D. (2014). Global Climate Risk Index 2014: Who Suffers Most from Extreme Weather Events? Weather- Related Loss Events in 2012 and 1993 to 2012.

Tracks of tropical cyclones that entered the PAR during the period 1948-2005

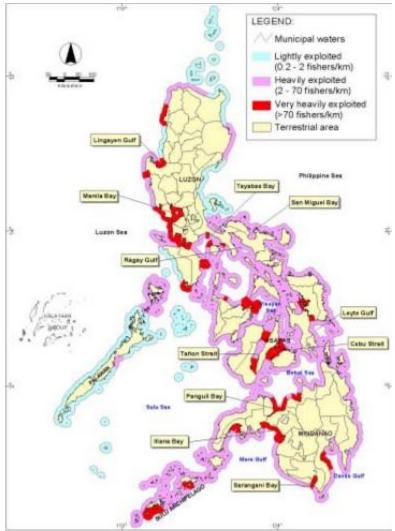
(1128 tropical cyclones) 30°N Actual tropical cyclone tracks for the period 1948-2005 112°E 114°E 134°E 136°E 142°E 144°E 24°N 18°N 12°N The grid boxes indicate the total number of tropical cyclones assing through each 1°x1° lat/long grid over he period 1948-2005. 6°N Data is obtained from the best track data of the Weather Branch of PAGASA ilippine Area of Respor Projection: Universal Transverse Mercator (UTM) 114°E 116°E 144°E 118°E 138°E 140°E 142°E 124°F 130°F 134°F 136°E Prepared by: Climate Data Section, Climatology & Agrometeorology Branch, PAG 00 112°E 116°E 120°E 124°E 128°E


Map of typhoon frequency in the Philippines

PHILIPPINES: A VERY VULNERABLE COUNTRY

Source: Burke LK et al. (2011). Reefs at Risk Revisited. Washington DC, USA: World Resources Institute

STATUS OF PHILIPPINE CORAL REEFS


Threats to Coral Reefs:

- Overfishing
- Destructive Fishing
- Pollution
- Sedimentation
- Coastal Development

Figure 3. Philippine map and its biogeographic regions (brown lines; Aliño and Gomez 1994) showing the color coded hard coral cover data that were surveyed from 2008 to 2014 in 73 municipalities. Typhoon paths: Blue arrow for Typhoon Washi (*Sendong*), Red arrow for Typhoon Bopha (*Pablo*) and Green arrow for Typhoon Haiyan (*Yolanda*).

STATUS OF PHILIPPINE FISHERIES

- Nearly 60% of the population is dependent on fisheries
- Fishers are the poorest of the poor sector ^a
- Fish stocks in major fishing grounds in the Philippines have been reduced to less than 10% of 1950s level ^b
- Average catch rate of Filipino fisherfolks is less than ½ of what they catch in 1970s^c

Sources: ^aCastro,LV (2006). Poverty Statistics for the Basic Sector; ^bGreen, SJ et al., (2003): Philippine Fisheries in Crisis: A Framework for Management; ^cMuallil et al., (2014)

TOOL FOR UNDERSTANDING RESILIENCE OF FISHERIES (VA-TURF)

OBJECTIVES

- To identify vulnerable fishing communities
- To demonstrate how to link vulnerability assessment results to climate change adaptation
- To draft action plans towards reducing vulnerability

VULNERABILITY ASSESSMENT TOOLS FOR COASTAL ECOSYSTEMS A Guidebook

Tool for Understanding Resilience of Fisheries

Sa muel, S. Mamauag¹⁴ Porfirio M. Aliño¹ Renmar Jun S. Martinez¹ Richard N. Mualili¹ Maria Victoria A. Doctor⁴ Emertinda C. Dizon⁴ Rollan C. Geroni mo⁴ Rollan C. Geroni mo⁴ Reni el B. Cabral¹

 Varine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines ³Conservation International – Philippines, Teachers Village, Diliman, Quezon City 1101, Philippines

*smamauag®yahoo.com

Tool for Understanding the Baciliance of Fishesis or TUBF is a tool for assessing the climate charge valueshilly of constalt fishesis in historytics. It is constitutive and provide states with short pace in a distributive state in the state of generate it is a first-step assessment. In identifying priority areas with short pace if a distributive state in the state of of hist Samukhky and Adaptive Capacity variables assessing the total can comprehensible whole statistical in the state of the Samukhky and Adaptive Capacity variables used in the tool areas comprehensible whole statistic high prophytical and paids as the state of the Samukhy and Adaptive Capacity variables used in the tool area comprehensible whole statistic high prophyticated mathematical methods. The utility of TUBF primarily combined to a distributive that a bab holds of while have a mathematical methods. The utility of TUBF primarily combined to a gate the seasarch on the basis (ag. Banded 2007, Allison at all and heard states the state of the colorat scores laced in the tool areas the seasarch on the basis (ag. Banded 2007, Allison at all and heard and provide the tool at scores laced in the tool at come laced and be dowed distributions theory the tool score line in the state of the state of the state and the state bab holds are of the active historical in the state of the state and the state of the state of the state and heard allowed allowed and the state of the state and the state of the state and heard allowed allowed and the state of the state and the state and the state and the state of the state and the state of the state and the and the state and the state of the state and the state of the state and the state and the state of the state and the state and the state of the and the state and the state and the state and the state of the state and the state and the and the state and the and the state and the state and the state and the state and the hout of the state

CHAPTER 6 Tool for Understanding Rollins and Roberts 97

Fisheries Research 147 (2013) 381-393

Contents lists available at ScienceDirect

Fisheries Research

journal homepage: www.elsevier.com/locate/fishres

A framework for vulnerability assessment of coastal fisheries ecosystems to climate change—Tool for understanding resilience of fisheries (VA–TURF)

Samuel S. Mamauag^{a,b,*}, Porfirio M. Aliño^{a,b}, Renmar Jun S. Martinez^{a,b}, Richard N. Muallil^{a,b,c}, Maria Victoria A. Doctor^b, Emerlinda C. Dizon^d, Rollan C. Geronimo^d, Fleurdeliz M. Panga^{a,b}, Reniel B. Cabral^{a,b,e}

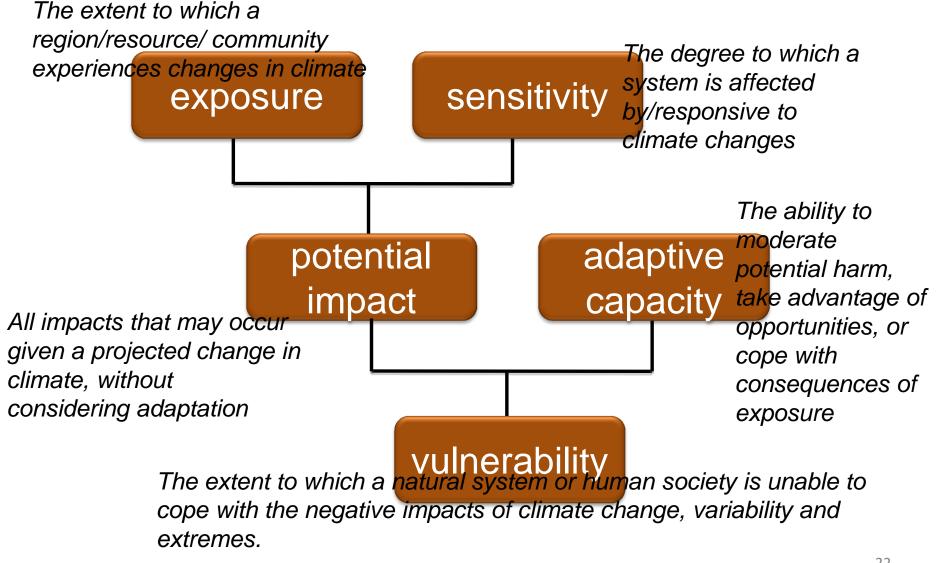
* Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines

^b Marine Environment and Resources Foundation, Inc., Marine Science Institute, University of the Philippines Diliman, Quezon City 1101 Philippines

^c Mindanao State University-Tawi-Tawi College of Technology and Oceanography, 7500 Bongao, Tawi-Tawi, Philippines

^d Conservation International-Philippines, Teachers Village, Diliman, Quezon City 1101, Philippines

* National Institute of Physics, University of the Philippines Diliman, Quezon City 1101, Philippines


FEATURES

- Target end-users: Local stakeholders
- Spatial scale: Fishing village or barangay
- Climate Change hazards considered: Waves and storm surge, SST
- Required data is accessible or easily generated
- Analysis (Scoring and ranking) is simple; devoid of complicated mathematical equations
- ✓ Assessment is participatory
- Assists in decision-making for the local adaptation strategies

FRAMEWORK

VA-TURF

Slide courtesy of P. Marshall GRMPA

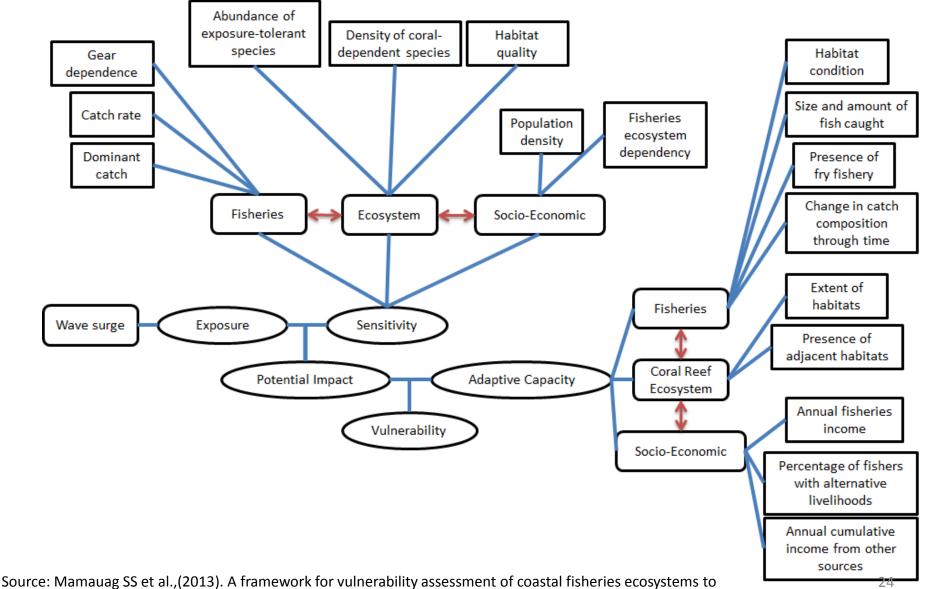
Sources in OECD 2006

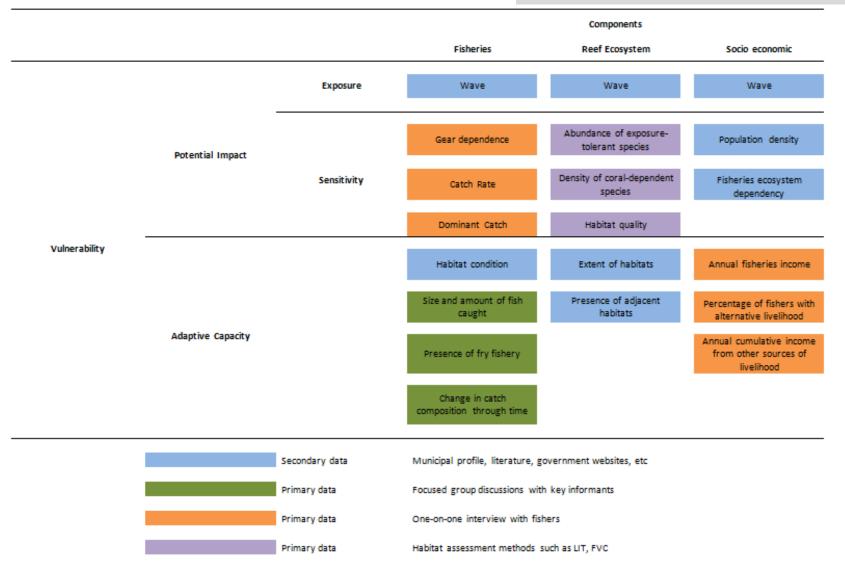
FRAMEWORK

VA-TURF

Fisheries

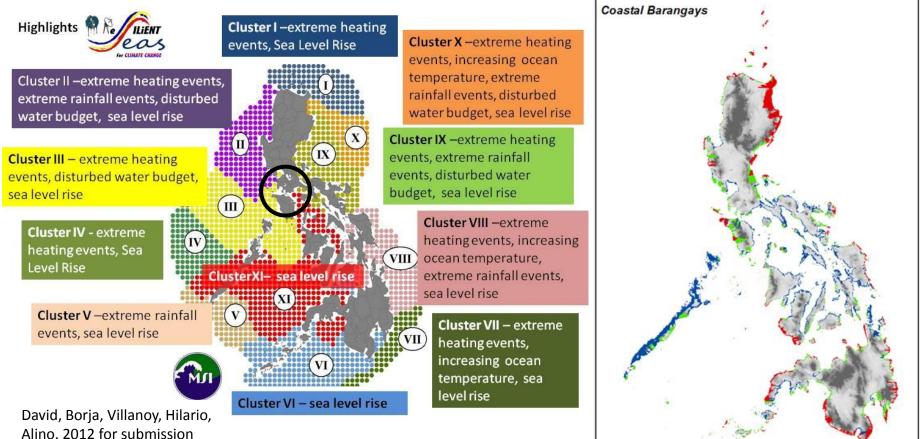
Reef Ecosystem


Socioeconomic


Source: Mamauag, SS et al.,(2013). A framework for vulnerability assessment of coastal fisheries ecosystems to climate change—Tool for understanding resilience of fisheries (VA-TURF). Fisheries Research 147; 381-393.

FRAMEWORK

VA-TURF



climate change—Tool for understanding resilience of fisheries (VA-TURF). Fisheries Research 147; 381-393.

EXPOSURE

VA-TURF

Wave (Relative Exposure Index)

Climatic Change

EXPOSURE

- Input data:
 - Gridded bathymetry
 - Digital coastline
 - Wind data
- Calculated using WEMo (Wave Exposure Model) (<u>http://www.ccfhr.noaa.go</u> v/stressors/wemo/)

$$\operatorname{REI} = \left(\sum_{i=1}^{8} EffF_i \ V_i \ D_i\right) / 8$$

Eff F_i = Effective fetch for the ith direction V_i = Wind speed for the ith direction D_i = Wind duration for the ith direction

EXPOSURE

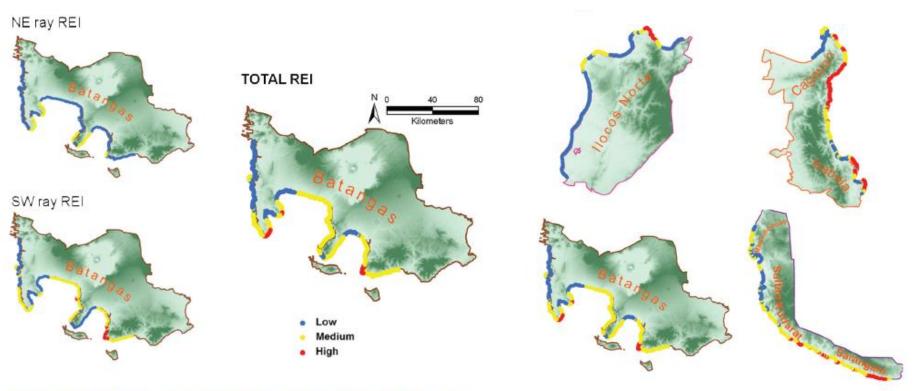


Figure 8: Wave exposure maps based on WEMo-derived Relative Exposure Index for the northeast or NE ray (upper left panel), southwest or 5W ray (lower left panel) and the sum of all rays or TOTAL (right panel)

SENSITIVITY

FISHERIES

CRITERIA	LOW 1 to 2 points	MEDIUM 3 to 4 points	HIGH 5 points
Dominant catches	Pelagics (tuna, mackerel, etc)	Mix of demersal and pelagic species	Demersal species (e.g. grouper)
Catch rate	>8 kg/fisher/day	3 to 8 kg/fisher/day	<3 kg/fisher/day
Gear habitat dependence	Mostly mobile gears (e.g. drift gill nets)	Presence of both types	Habitat-associated gears (e.g. fixed on seagrass beds)

REEF ECOSYSTEM

CRITERIA	LOW 1 to 2 points	MEDIUM 3 to 4 points	HIGH 5 points
Wave-tolerant species relative to total abundance	Pectoral-swimming fishes (labrids, scarids, acanthurids) greater than 50%	Mix of site- attached and mobile fish species; 15-50% pectoral swimming fish	Abundant site- attached butteflyfish, angelfish, damselfish; <15% pectoral swimming fish
Density of coral dependent fish species (Butterflyfish)	<5% of the total density	5 to 10 % of the total density	>10% of the total density
Coral cover	>50% coral cover	25 to 50% coral cover	<25% coral cover

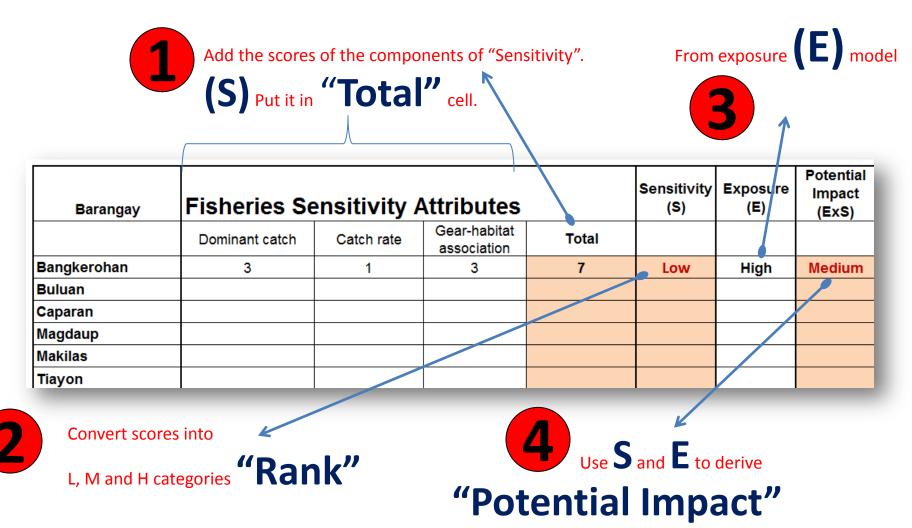
SOCIO-ECONOMIC

CRITERIA	LOW 1 to 2 points	MEDIUM 3 to 4 points	HIGH 5 points
Population density	<200 individuals/km ² (not crowded; sparsely distributed)	200 to 400 individuals/km ² (moderately crowded)	>400 individuals/km ² (very crowded)
Fisheries ecosystem dependency	<15% of total population are fishers	15 to 30% of total population are fishers	>30% of total population are fishers

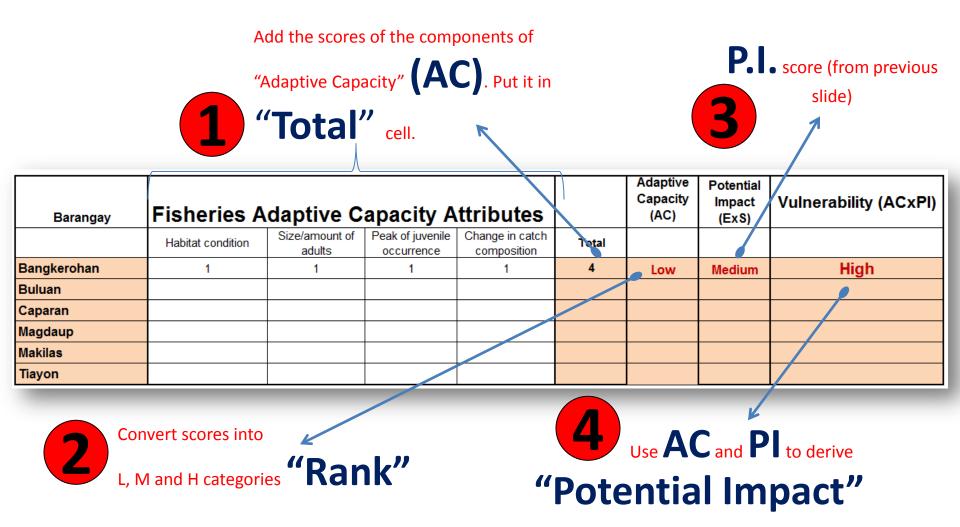
ADAPTIVE CAPACITY

FISHERIES

CRITERIA	LOW 1 to 2 points	MEDIUM 3 to 4 points	HIGH 5 points
Habitat size(fishing grounds)	Small (relative to the waters)	Intermediate size	Large
Average size/amount of catch	Mostly small, immature fishes	Abundance of small but with few large fishes	Abundant large fishes (most likely include spawners)
Occurrences of juveniles/fry fisheries	Absence to minimal occurrence (no known peak occurrence)	Few to medium level abundance during peak occurrence	Abundant juvenile during peak occurrence
Change in catch composition	Considerable changes in the last two decades	Few changes in the last two decades	No change in catch composition


REEF ECOSYSTEM

CRITERIA	LOW 1 to 2 points	MEDIUM 3 to 4 points	HIGH 5 points
Extent of habitats (coral reef areas)	Small reef areas; fragmented	Intermediate size of areas	Large reef areas
Presence and condition of adjacent habitats (corals, seagrass, mangroves)	Poor adjacent habitat quality/ No adjacent habitats	One habitat is of poor quality or very far	Presence of adjacent habitats with good conditions


SOCIO ECONOMIC

CRITERIA	LOW 1 to 2 points	MEDIUM 3 to 4 points	HIGH 5 points
Annual per capita income from fisheries	Below the provincial poverty threshold	Income is higher than the provincial poverty threshold up to 60%	Income is higher than 60% of the provincial poverty threshold
Fishers with other sources of income	<40% of fishers have other sources of livelihood	40 to 60% of fishers have other sources of income	>60% of fishers have other sources of income
Total amount of all income	Total cumulative income is below provincial poverty threshold	Total cumulative income is higher than provincial poverty threshold up to 60%	Total cumulative income is greater than 60% of the provincial poverty threshold

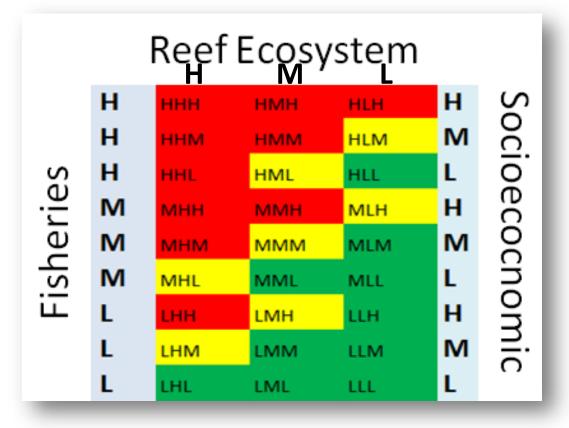
Computation for Potential Impact (PI):

Computation for VULNERABILITY (V):

Reference to convert scores into L, M and H categories ("Rank")

Table 2. Point class interval and corresponding rank classifications for the sensitivity and adaptive capacity components of fisheries ecosystem.

Fisheries Ecosystem	Number of variables	Minimum total score possible	Maximum total score possible	Point class interval (score to rank system conversion)		
Fisheries						
Sensitivity	3	3	15	3-7→ Low (L) 8-11 → Medium (M) 12-15 → High (H)		
Adaptive Capacity	4	4	20	4-9 → Low (L) 10-15 → Medium (M) 16-20 → High (H)		
Reef ecosystem						
Sensitivity	3	3	15	3-7→ Low (L) 8-11 → Medium (M) 12-15 → High (H)		
Adaptive Capacity	2	2	10	2-4 → Low (L) 5-7 → Medium (M) 8-10 → High (H)		
Socio-economic						
Sensitivity	Sensitivity 2 2		10	2-4 → Low (L) 5-7 → Medium (M) 8-10 → High (H)		
Adaptive Capacity	3	3	15	3-7→ Low (L) 8-11 → Medium (M) 12-15 → High (H)		


Reference to derive "Potential Impact"

Sensitivity

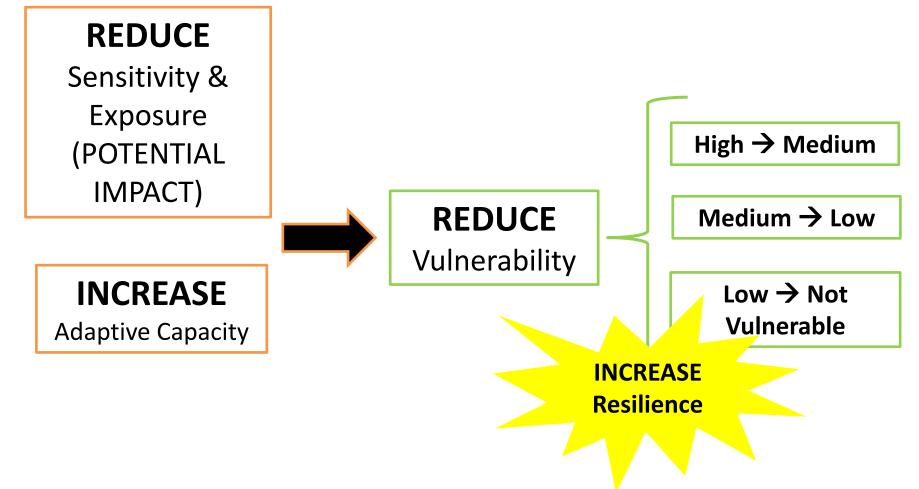
	PI	L	М	Н		
e	L	L	L	М		
Insc	Μ	L	М	Н		
Exposure	н	М	Н	н		

Reference to derive **"VULNERABILITY"** Adaptive Capacity Potential Impact PI/AC L Μ н Μ L М н М Н н Н Μ

Computation for Overall Vulnerability

Tip:

1st Letter: Fisheries vulnerability 2nd Letter: Reef ecosystem vulnerability 3rd Letter: Socioeconomic vulnerability


VA-TURF

ADAPTATION

- adjustment in natural or human systems in response to actual or expected climate change and associated impacts in order to reduce harm or take advantage of beneficial opportunities (IPCC, 2001; USAID, 2009)

-a process that results in **a reduction in harm** or risk of harm, and the attainment of benefits relating to climate variability and climate change (UK CIP, 2003)

VA-TURF

NEXT STEPS

ADAPTATION STRATEGIES FOR SUSTAINABLE FISHERIES

- Reducing fishing mortality
- Enhancing stock recovery
- Sustainable fisheries use
- Threat reduction on ecosystems
- Organizing fisher communities
- **Restoring resiliency & connectivity**
- EAFM development with equitability
- Diversifying livelihood options

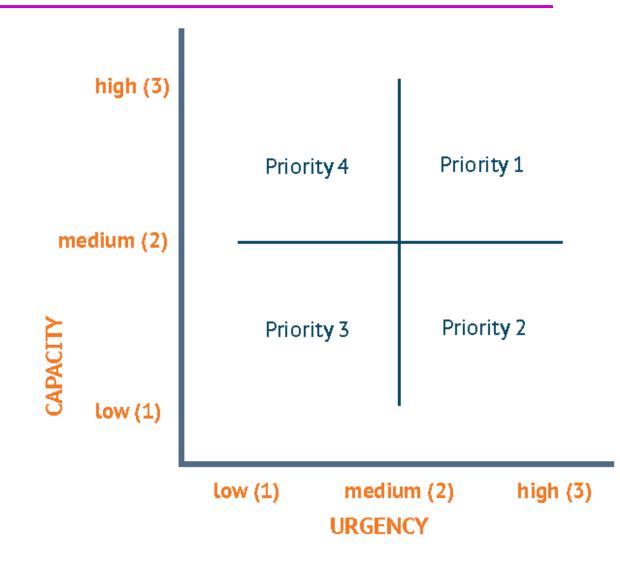
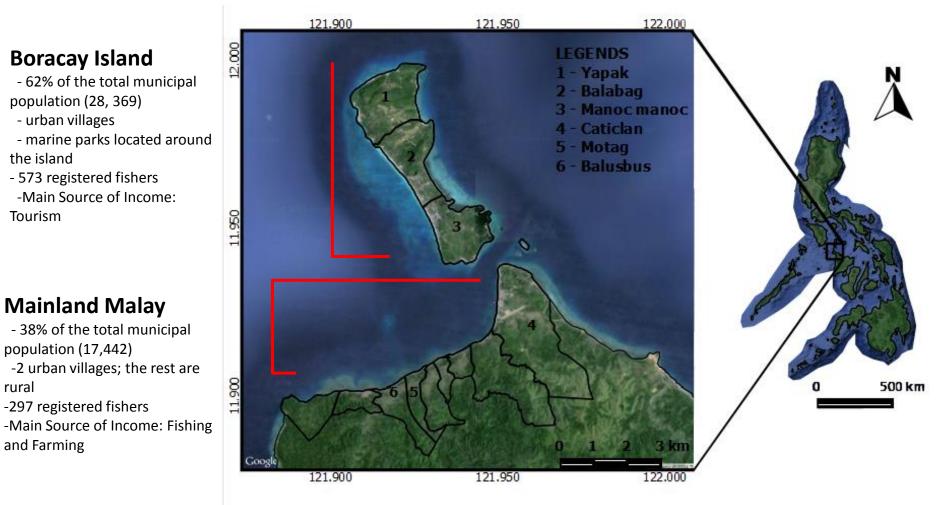
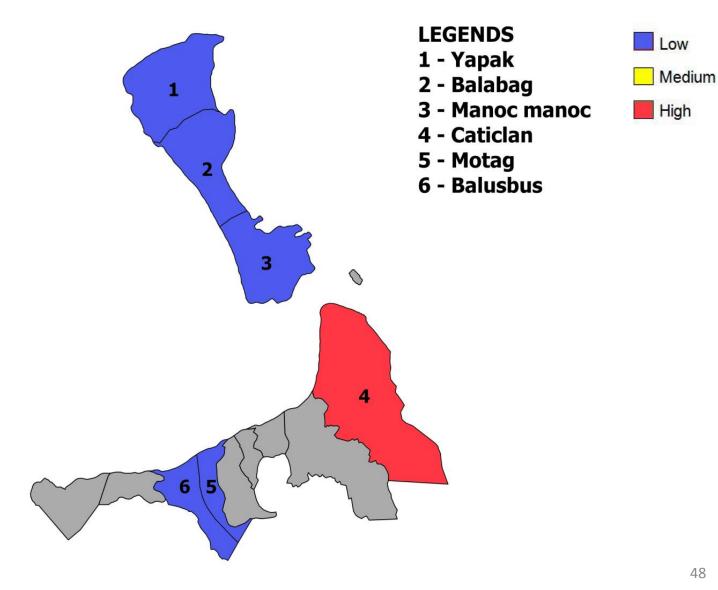

VA-TURF

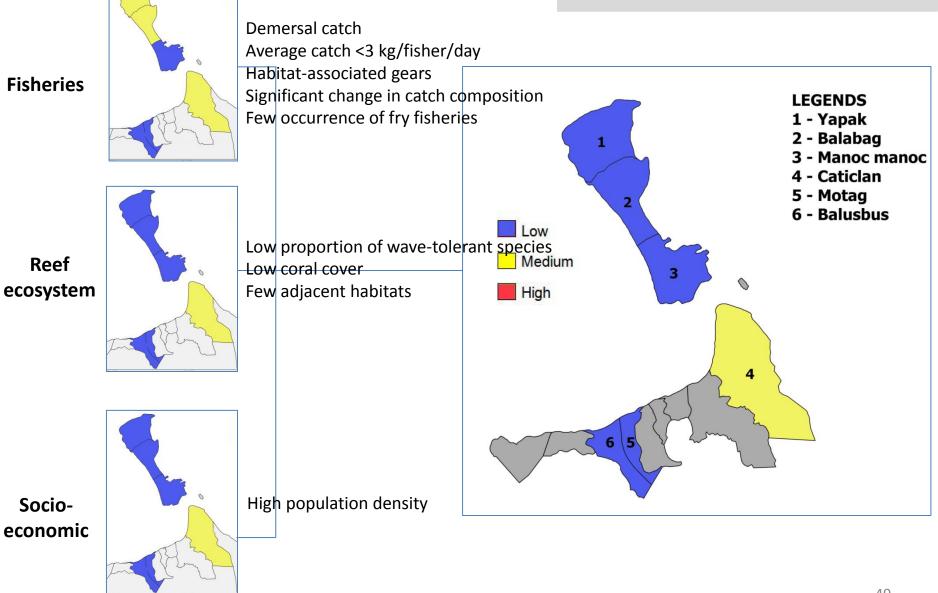
Table 37: Scoring for Urgency (Importance) and Capacity

Each action is scored based on whether they are important and/ or address an urgent need, and if there is capacity for implementation.

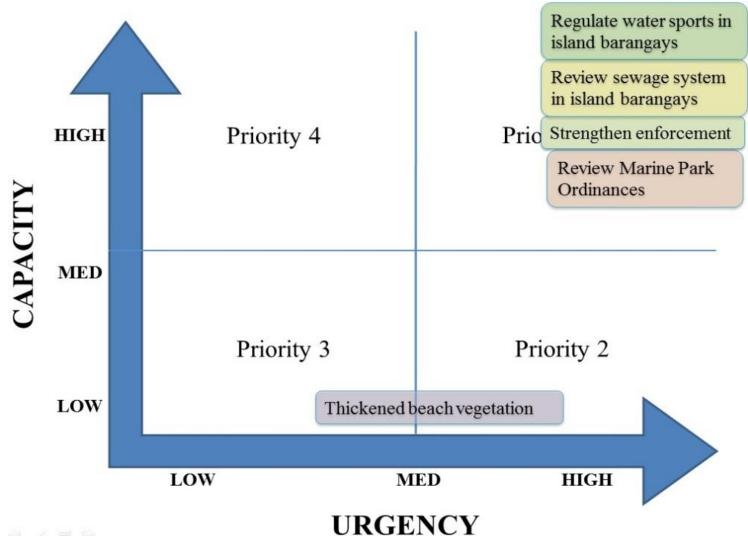
ADAPTATION ACTION	URGENCY	CAPACITY		
1) 2) List of top three actions most relevant to the highest vulnerabilities of each barangay, 3) as guided by the VA	(2) Does the action address an URGENT need? High: 3 Medium: 2 Low: 1	(3) Is there operational CAPACITY to implement activities?		






Map of municipalities assessed with VA-TURF

- First class municipality
- 17 villages; 12 are coastal
- Estimated 1.3 million visitors (2013)
- Population: 45, 811 (2010)
- No. of fishers: 870 (2012)



WAVE EXPOSURE

ACTIONS	How does the action reduce vulnerabil ity? (↓PI↑AC)		What is needed for implementation?		~	Are there	What is	List benefits	
			Socio- economic	Ecological	Governance	CAPACITY	potential negative impacts? (Y/N)	the value added to address CC concerns?	e.g. ecological, socio- economic
Review Marine Park ordinances (island, mainland)	↑AC	3		Establish Marine Park coordinates	Establish Marine Park coordinates	3	Y	Expand marine park to other habitats	Socio-economic, ecological
Review sewage system (Yapak, Balabag, Manoc- manoc)	↓PI	3	IEC to residents and establishmen ts	Assessment of potential groundwater seepage; Review water circulation on the east side	Coordination with BIWC ; Enforcement of ordinance	3	N	Reduction of habitat threats	Health benefits (Habitat; Human)
Regulate water sports (island)	ψPI	3		Assess areas where water sports exist	Review for legal basis for zonation	3	Y	Reduction of habitat threats	Health benefits (Habitat; Human); Proper Zoning
Strengthen enforcement in fisheries (mainland, island)	↑АС, ↓ РІ	3	IEC to fisherfolks and Bantay Dagat		Review updated ordinance; Capacity building for Bantay Dagat	3	Y	Reduction of habitat threats	Sustainable fisheries
Stricter implementatio n	↑АС, ↓ РІ	3	IEC to residents and establishmen ts	Study variability	"Kamay na Bakal"	3	Y	Adjustment of easement standards	Protect lives; livelihood
Thicken beach vegetation (island, mainland)	↑АС, ↓ РІ	2		Assess beach vegetation (existence, identification or profiling)		2	Y	Natural buffers to erosion	Protection against erosion

POST VA ACTIVITIES

CASE STUDY

Mangrove rehabilitation
Photo: MAO-Malay

Seaweed farming at Mainland Malay Photo: FJBalquin

Other Projects:

Underwater Clean Up Beach Clean Up Adopt a Marine Sanctuary Program Coral refurbishment project Demolition of establishments on the 25+5 easement zone

Ridge to Reef IEC for barangay organizations, primary and secondary schools Photo: AAKLumagod

Refresher for Bantay Dagat on ordinances Photo: MAO-Malay

SUMMARY

- Climate change has direct and indirect impact to fisheries.
- Identification of vulnerable areas is a first step towards climate change adaptation.
- Site-specific attributes contribute to the overall vulnerability of an area.

SUMMARY

- VA-TURF is a simple tool for non-scientists to use and apply in their community to identify vulnerable fishing communities.
- The results from the assessment allows identification of adaptation strategies to alleviate potential climate change impacts on fisheries.
- Vulnerability differences and adaptation measures can significantly shift the outcome of any climate change impact.

CLIMATE CHANGE

will We can do something about it!

Thank you!

Contact details: remelyndr@gmail.com rideramos@msi.upd.edu.ph

community ecology laboratory

Dr. Porfirio "Perry" Aliño Dr. Samuel Mamauag VA Workshop facilitators and documenters