Physiological Studies on Seed Priming of Rice for Establishment in Stressed Environment

> Maribel L. Dionisio-Sese Professor IBS, CAS, UPLB

## Rice is an important cultivated cereal



http://foodportraits.com/food-culture/rice-asian-ingredient

http://www.irri.org/index.php?option=com k2&view=item&id=9081&Itemid=100481

## RICE ECOTYPES Based on Soil Surface Hydrology



De Datta, 1981

### FLOODING events have increased across the globe



Figure 1. Numbers of floods have increased in each of the past six decades across the globe. Graphs show the number of floods classified as a disaster in the International Disaster Database of the University of Louvain, Belgium for the period from 1950 through 2009 by geographical region [93]. Events include river or coastal floods, rapid snow melts, heavy rainfall and other occurrences that caused significant social or economic hardship. Adapted from a Millennium Ecosystem Assessment map (http://maps.grida.no/go/graphic/number-of-flood-events-by-continent-and-decade-since-1950).

## WATER DEFICIT/DROUGHT

### **Increase in summer drought**



Change in the likelihood of summer season drought (defined as a once in ten years event for the late 20th century) by the end of the 21st century, according to multi-decade simulations with the operational model of the European Centre for Medium-range Weather Forecasts (ECMWF) based on the A1b scenario of the IPCC.

Floods and Droughts in a Changing Climate – Now and the Future April 29th, 2011 Paul A. Dirmeyer Center for Ocean-Land-Atmosphere Studies Calverton, Maryland

## SALINITY STRESS



http://www.clubgreen.nl/vraag/Biosaline-agroforestry-and-forestry-world-large.jpeg

## FLOODING



http://www.plantstress.com/articles/waterlogging\_i/waterlog\_i.htm

### WATERLOGGING

## **Associated Problems in Flooded Soil**



## WATER DEFICIT/DROUGHT



http://www.knowledgebank.irri.org/ricebreedingcourse/image113.jpg

## **Associated Problems Related to Drought**



Farooq et al. 2009

## SALINITY STRESS



- Single, most widespread soil toxicity problem
- Substantial agricultural lands lost annually to salinity
- Problem on the rise due to climatic changes and bad agricultural practices

## **Associated Problems Related to Salinity**

### Osmotic Stress Ionic Stress

High salt concentration
↓
Low water potential
↓
Reduced water
absorption
↓
Water deficit

High salt concentration ↓ Ion (Na<sup>+</sup> / Cl<sup>-</sup>) toxicity ↓ Reduced K<sup>+</sup> uptake ↓ Nutrient imbalance

## **Rice Growth Stages**



#### **Ripening phase**

## Flooding, drought and salinity mutually affect seed germination and early seedling stage





## Seed Priming

- Simple, low-cost, low-risk seed invigoration strategy
- Improve tolerance to undesirable germination and early seedling establishment
- Known to enhanced performance of several horticultural crops
- Effect on rice crop subjected to stressful environment not fully explored

## Seed priming

- Uptake of water to initiate early stages of germination
- No radicle protrusion
- Drying to the original seed moisture content



## **Physiology of Seed Priming**



© 2006 Gerhard Leubner - The Seed Biology Place - http://www.seedbiology.de - Redrawn/modified from: Bradford KJ, Bewley JD (2002). Seeds: Biology, Technology and Role in Agriculture. Chapter 9, pp. 210-239. In: Plants, Genes and Crop Biotechnology (eds Chrispeels MJ, Sadava DE), Jones and Bartlett, Boston.



### PREGERMINATION OF SEED

http://anpsa.org.au/gif/pregerm1.gif

## Methods (Hydration) of Seed Priming

### • Hydropriming water



• **Osmopriming** osmotic solution (inorganic salts or PEG)

 Matripriming non-toxic solid carrier (vermiculite, peat moss) Effect of seed priming on rice seeds and seedlings subjected to stress

- Priming methods
- Germination and seedling establishment
- Cultivars contrasting in tolerance
- Carbohydrate mobilization and membrane lipid peroxidation

### **MODES OF RICE CROP ESTABLISHMENT**



## **Advantages of Direct Seeding**

- Reduction on labor cost
- Results in earlier harvest
- Promotes crop intensification
- Reduction in irrigation requirements
- Reduction on herbicide use (early flooding as weed control)

# Early flooding requires tolerance during germination in direct-seeded rice



## **Rice Genotypes**

| Grouping               | Genotype                                                                                                             | Relevant<br>Tolerance |
|------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------|
| AG-Parental Lines      | Khao Hlan On (KHO)<br>Ma Zhan Red (MZR)<br>Khaiyan                                                                   | Tolerant              |
| AG-Derived Lines       | IR87181-87-2-1<br>IR81935-33-1-2-1<br>IR817181-87-2-1<br>IR83770-9-3-2-23                                            |                       |
| Non-AG, Non-sub1 Lines | IR42, IR64<br>BR11, CR1009, PSBRc10<br>Swarna, Sambha Mahsuri                                                        | Intolerant            |
| Non-AG, sub1 Lines     | IR64 sub1, BR11 sub1<br>CR1009 sub1, Swarna sub<br>Sambha Mahsuri sub1<br>IR66876-11-NDR-1 sub1<br>INPARA-3, PSBRc68 |                       |

# Early flooding requires tolerance during germination in direct-seeded rice







## **Priming Procedure and Sowing Condition**



Soaking in Water or Salt Solution for 12h / 24h / 48h



Forced Air-Drying for 12h / 24h



Laboratory Condition Deoxygenated Stagnant Agar

Greenhouse Condition Flooded Soil

## **Parameters Measured**

- Deoxygenated Agar Condition
  - Germination percentage
  - Coleoptile length
- Flooded Soil Condition
  - Germination percentage (survival)
  - Shoot length
  - Mesocotyl length
  - Root length

## Germination and Survival



Seven Days (7d) after Sowing in Deoxygenated Agar Condition Twenty-one (21d) after Sowing in Flooded Soil Condition

### **Priming Effect on Seed Germination in Hypoxic Condition**

| Genotype                                            | Unprimed | Hydropriming<br>12h:12h 24h:24h |       | Osmopriming<br>12h:12h 24h:24h |       |
|-----------------------------------------------------|----------|---------------------------------|-------|--------------------------------|-------|
| AG-Parental Lines (Tolerant) Germination Percentage |          |                                 |       |                                |       |
| КНО                                                 | 100.0    | 98.3                            | 100.0 | 98.3                           | 93.3  |
| MZR                                                 | 100.0    | 95.0                            | 100.0 | 95.0                           | 90.0  |
| Khaiyan                                             | 95.0     | -                               | 95.0  | -                              | 98.3  |
| AG-Derived Lines                                    |          |                                 |       |                                |       |
| IR81159                                             | 85.0     | 95.0                            | -     | 95.0                           | -     |
| IR81935                                             | 98.3     | 98.3                            | 98.3  | 95.0                           | 93.3  |
| IR87181                                             | 80.0     | 90.0                            | 90.0  | 90.0                           | 93.3  |
| IR83770                                             | 96.67    | -                               | 98.3  | -                              | 91.67 |
| Non-AG Lines (Sensitive)                            |          |                                 |       |                                |       |
| IR42                                                | 58.3     | 96.67                           | 98.3  | 96.67                          | 95.0  |
| IR64                                                | 65.0     | -                               | 100.0 | -                              | 98.3  |

• Seed priming significantly improved germination of sensitive genotypes

### **Priming Effect on Coleoptile Length in Hypoxic Condition**

| Genotype                                            | Unprimed | Hydropriming<br>12h:12h 24h:24h |      | Osmopriming<br>12h:12h 24h:24h |      |
|-----------------------------------------------------|----------|---------------------------------|------|--------------------------------|------|
| AG-Parental Lines (Tolerant) Coleoptile Length (cm) |          |                                 |      |                                |      |
| КНО                                                 | 1.71     | 2.31                            | 1.42 | 1.34                           | 1.07 |
| MZR                                                 | 1.92     | 1.34                            | 1.51 | 2.36                           | 1.12 |
| Khaiyan                                             | 1.66     | -                               | 1.76 | -                              | 1.64 |
| AG-Derived Lines                                    |          |                                 |      |                                |      |
| IR81159                                             | 0.70     | 0.92                            | -    | 0.88                           | -    |
| IR81935                                             | 1.18     | 1.75                            | 1.27 | 1.59                           | 0.87 |
| IR87181                                             | 0.89     | 0.97                            | 0.90 | 1.67                           | 1.01 |
| IR83770                                             | 1.07     | -                               | 1.19 | -                              | 0.79 |
| Non-AG Lines (Sensitive)                            |          |                                 |      |                                |      |
| IR42                                                | 0.09     | 0.45                            | 0.89 | 0.22                           | 0.80 |
| IR64                                                | 0.30     | -                               | 1.51 | -                              | 1.20 |

 Seed priming significantly improved coleoptile length especially of sensitive lines at longer soaking and drying duration

# In flooded soil, percentage germination was expressed in terms of survival





 Seed priming significantly increased survival

- All genotypes
- More prominent in non-AG lines

### Hydropriming (24h:24h) Effect on Survival in Flooded Soil



### Hydropriming Effect on Shoot and Root Lengths in Flooded Soil



#### PRIMING TREATMENT

- Hydropriming generally increased shoot and root lengths.
  - Tolerant genotypes always showing better growth.



### Embryo viability staining 2d after seeding



Osmopriming (0.45 M KCI ; -1.5 MPa) (Tap water ; 0 MPa)

Hydropriming

48 h of priming (soaking)

Hydropriming for 48h decreased embryo viability



### **Effect of Priming and Pre-soaking on Germination**



 Hydropriming and pre-soaking before sowing resulted in earlier and more uniform germination

### Effect of Priming and Pre-soaking on Survival in Flooded Soil



 Combining hydropriming and pre-soaking before sowing resulted in better survival for sensitive genotype



 Hydropriming and pre-soaking before sowing resulted in enhanced shoot and root emergence



 Hydropriming and pre-soaking before sowing resulted in longer shoot and root growth

### Seed Carbohydrate Mobilization



http://mol-biol4masters.masters.grkraj.org/html/Gene\_Expression\_II6-Plants\_More\_Promoter\_Elements\_files/image043.gif

### Hydropriming Effect on Total Amylase Activity in Hypoxic Condition



 Hydropriming generally resulted in higher amylase activity especially in tolerant genotypes



## Osmopriming Effect on Total Amylase Activity in Flooded Soil (3d after sowing)



### **Osmopriming Effect on Soluble Sugar and Starch**



## **Membrane Lipid Peroxidation**



http://ars.els-cdn.com/content/image/1-s2.0-S1369526604000573-gr2.jpg



 Osmopriming reduced the extent of lipid peroxidation, thus decreasing seed damage



 Increased activities of superoxide dismutase (SOD) and catalase (CAT) in osmoprimed seeds especially in tolerant genotypes

### **Osmopriming Effects on Rice Subjected to Drought**

| Cultivar<br>(Reference)            | Priming<br>Treatment                                             | Soil Moisture<br>Condition (SMC)                | Results                                                                                                                   |  |
|------------------------------------|------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| llpumbyeo<br>(Lee et al. 1998)     | PEG (0.6 MPa)<br>4d then air-dry                                 | 60, 80, 100,120,<br>140% FC<br>(tray condition) | Higher (5-34%) germination and<br>emergence rates in primed seeds<br>Priming effect greater at too lower<br>or higher SMC |  |
|                                    |                                                                  |                                                 |                                                                                                                           |  |
| Cultivar<br>(Reference)            | Priming<br>Treatment                                             | Soil Moisture<br>Condition (SMC)                | Results                                                                                                                   |  |
| OMCS 94<br>(Du and Truong<br>2002) | KCI (14%) or<br>sat CaHPO <sub>4</sub> ,<br>15h then sun-<br>dry | Very dry soil, near<br>PWP<br>(field condition) | Primed seeds showed:<br>enhanced emergence<br>increased plant density<br>greater tiller numbers<br>higher grain yield     |  |

### **Priming Effects on Rice Subjected to Drought**

| Cultivar                                                                                                                                               | Priming                                                             | Water Stress                                        | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Reference)                                                                                                                                            | Treatment                                                           | Condition                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Indica<br>Gangyou 527<br>(hybrid)<br>Yangdao 6<br>(conventional)<br>Japonica<br>Nongken 57<br>(lowland)<br>Zhonghan 3<br>(upland)<br>(Sun et al. 2010) | Water 24h then<br>oven-dry<br>PEG (5%-25%)<br>12h then oven-<br>dry | PEG (0, 5%, 10%<br>15% and 20%) 10d<br>(petri dish) | <ul> <li>Hydropriming of all cultivars and<br/>15-20% PEG-primed Gangyou 527<br/>and Nongken 57 cultivars showed<br/>higher germination vigor<br/>lower MDA and proline,<br/>higher PAL, SOD, POX, CAT act,<br/>lower soluble sugar, and<br/>higher soluble protein in seedlings</li> <li>Promotive effects higher in<br/><i>indica</i> than <i>japonica</i> cultivars<br/>hybrid than conventional cultivars<br/>upland than in lowland cultivar</li> <li>PEG-priming with moderate conc<br/>resulted in higher tolerance to<br/>drought stress than hydropriming</li> </ul> |

## Osmopriming Effect on Rice Subjected to Salt Stress

| Cultivar                       | Priming                | Salt Stress | Results                                                                                                                                                                   |
|--------------------------------|------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Reference)                    | Treatment              | Condition   |                                                                                                                                                                           |
| China rice<br>(He et al. 2002) | Mixed-salt<br>solution | 0.58% NaCl  | Primed seeds exhibited<br>more rapid germination<br>increase in seed α- and β-<br>amylase activities<br>increase in root dehydrogenase<br>moderate rise in shoot catalase |

## **Conclusions and Recommendations**

- Seed priming effective even under adverse soil conditions
- Faster germination and enhanced seedling establishment upon priming due to
  - higher activity of antioxidant enzymes
  - higher activity of amylase enzymes
- Priming using tolerant cultivars recommended

## Acknowledgements

 Mr. Ryan John P. Pascual [BS Biology (Plant Biology), UPLB *cl* 2010]
 Dr. Evangeline S. Ella [PhD by Research (Botany), UPLB 2011]
 Dr. Abdelbagi M. Ismail (IRRI Plant Physiologist)

Mr. Mark Anthony F. Rabena [BS Biology (Plant Biology), UPLB *cl* 2008)
Ms. Marianita N. Eroy [MS Botany, UPLB 2005]

## Thank you for your attention!