From Genomes to Phenomes to Breeding

Lukas Mueller Boyce Thompson Institute

SOYCE THOMPSON INSTITUTE

Tomato Genome

- BAC by BAC approach 2004-2009 (~1500 BACs)
- Whole genome shotgun of entire tomato genome, started in 2009
- Technologies used: 454, Solexa (Syngenta), SOLiD
- 454 data assembled using Newbler
- Homopolymer correction using Solexa data
- Integration of BAC sequences
- Ordering and orientation of scaffolds based on

Why Gh13, a begomivirus-resistant inbred?

- "Begomoviruses are a major threat in subtropical and tropical countries
- Gh13 highly resistant to monopartite and bipartite begomoviruses
- Gh13 used in association studies of molecular marker with resistance
 - ["] F3 family experiments
 - " RIL population available
- " SolCAP SNP analysis available
- "NSF requires that seed be available for distribution

Origin OF Gh13 TYLCV virus resistance: HUJI (Vidavski and Czosnek, 1994)

S. Habrochaites LA1777 & LA0386

> Boyce Thompson Institute for Plant Research

Ih902 x S line, FAVI 9

Hybrids sent to Guatemala (1998)

sol genomics network

Gh13 inbred: known introgressions

Ty3. chromosome 6, introgressed from wild species (S. chilense?)

12. chromosome 11 (S. pimpinellifolium)

Other introgressions from *S. habrochaites.* + Other species?

sol genomics network

Gh13 inbred: known introgressions

Ty3. chromosome 6, introgressed from wild species (S. chilense?)

I2. chromosome 11 (S. pimpinellifolium)

Other introgressions from *S. habrochaites.* + Other species?

Disease resistance alleles can be found in wild species Need to find introgression **regions** And define introgression **contents**

Gh13 inbred: Whole genome sequencing

- > Illumina HiSeq 2000
- > One lane paired-ends = 20X tomato genome coverage
- Cost in 2012 : 2,400\$

Gh13 inbred: Whole genome sequencing

- > Illumina HiSeq 2000
- > One lane paired-ends = 20X tomato genome coverage
- Cost in 2012 : 2,400\$

<u>Output:</u> high number of reads Relatively simple to align to a reference genome.

Challenges:

- Low coverage regions
- Regions different from Heinz1706

Assembly: Heinz1706 is the reference genome

sol genomics network

sol genomics network

Gh13 inbred: SNP distribution

Hypothesis: SNPs are denser in introgression regions.

Chromosome 1

Chromosome 6

Boyce Thompson Institute for Plant Research

sol genomics network

Gh13 inbred: SNP distribution

Hypothesis: SNPs are denser in introgression regions.

Chromosome 1

Chromosome 6

SNP distribution: Gh13, S.pimpinellifolium

sol genomics network

Chromosome 6

position in base pairs

sol genomics network

SNP distribution: Gh13, S.pimpinellifolium

Boyce Thompson Institu for Plant Research

SNP distribution: Gh13, S.pimpinellifolium

Boyce Thompson Institute for Plant Research

PCR design: Gh13 chr. 6 and 11 Hypothesis: 1. SNP non-peak regions are closest to Heinz1706 2. SNP Peak regions come from wild introgressions Chromosome 6 Chromosome 11 300 scaled # of snps per 10Kb bin 200 100 50 0 4e+07 0e+00 2e+07 5e+07 0e+00 1e+07 2e+07 3e+07 4e+07 1e+07 3e+07 location (bp) location (bp) Boyce Thompson Institute

Plant Research

sol genomics network

PCR design: Gh13 chr. 6

sol genomics network

2. SNP Peak regions come from wild introgressions

sol genomics network

sol genomics network PCR design: Gh13 chr. 11-SNPs shared with S.pimpinellifolium 11 Peak regions: Gh13 = *S.pimpinellifolium* Spim_P11-039410 67 (different from other assayed wild species) Gh13 P11-039410 Solyc11g0 Sgal_P11-039410 Hz P11-039410 YP P11-039410 98 LA1777 P11-039410 Solyc11g032130 Solyc11g039390 Solvc11g039410 Solyc11g039420 Solyc11g039500 Non-peak regions: Gh13 = S.lycopersicum Solyc11g042710 Solyc11g044740_ (different from other assayed wild species) Hz P11-050800 Solyc11g045670 65 Gh13 p11-050800 Solyc11q050800 60 YP P11-050800 Solyc11g051000_ Sgal_p11-050800 Solyc11g056540 Spim P11-050800 Solyc11q062270 TG302 LA2779_P11-050800 Boyce Thompson Institute Plant Research

sol genomics network

õWe eat phenotypesö

Phenotypes

Phenotyping is hard

- Labor intensive, expensive
- Standardization of phenotypic measurements
- Ontology-based systems for databases

Ontologies

Many ontologies are currently developed:

- http://www.cropontology.org/
 - http://www.bioversityinternational.org/
- <u>http://plantontology.org</u> & PATO

• Difficult to apply one ontology to all plants!

es

ows

Sc

5

Stippled

			Sol Genomics	Network			
+ http://solge	nomics.net/stoc	k/6799/view			<u>د</u> (۹۰۰۵	ogle	
State S	sol genom	nics netwo	ork		home forum	contact help faq	
	search	maps	genomes	tools		sol search	
2418						log in new user	
			Accession: 31	13-100			
Stock details	;			Ne	w QTL population	Back to stock search	
[New] [Edi	t] [Delete]						
Organism Stock type	Solanun	n lycopersicun	n				
Stock rype	ne 313-10)					
Uniquenar	me 313-10)					
Description	n ere: Esther van	dar Kapan					
Stock edit	ors: Esther van	аег кпаар					
Synonyn	ns				None		
Pedigree	data				None		
Additiona	al information				None		
+ Associate	d loci (0)				[log-in to	associate new locus]	
Experimenta	il data				None		
Related st	tocks						
Accessio	ns this accessi	on is a membe	er of				
	Туре			Nam	e		
	f2 population		QTL	. Tomato Sausa	ge x LA1589 F2		
🗄 Images (1)					[Add new image]	
Literature an	nnotation (0)			None		[Associate publication]	
	annotation ()				[Add o	ntology annotations]	
🖃 Phenotyp	e data				[[ownload phenotypes]	
- Experi	iment: phenoty	pes recorded	for population Q	TL Tomato Sau	usage x LA1589	F2 by	

Phenotype data

Experiment: phenotypes recorded for population QTL Tomato Sausage x LA1589 F2 by Esther van der Knaap

Trait	Average	Min	Max	Lines/repeats
distal angle macro 10% (distal angle macro 10%)	151.30	151.30	151.30	1
distal angle macro 15% (distal angle macro 15%)	131.60	131.60	131.60	1
distal angle macro 20% (distal angle macro 20%)	108.55	108.55	108.55	1
distal angle micro 2% (distal angle micro 2%)	173.07	173.07	173.07	1
distal angle micro 3% (distal angle micro 3%)	168.79	168.79	168.79	1
distal angle micro 5% (distal angle micro 5%)	167.66	167.66	167.66	1
distal eccentricity index (distal eccentricity index)	0.98	0.98	0.98	1
distal fruit end blockiness 10% (distal fruit end blockiness 10%)	0.60	0.60	0.60	1
distal fruit end blockiness 20% (distal fruit end blockiness 20%)	0.79	0.79	0.79	1
distal fruit end blockiness 30% (distal fruit end blockiness 30%)	0.91	0.91	0.91	1
distal fruit end blockiness 5% (distal fruit end blockiness 5%)	0.44	0.44	0.44	1
distal fruit end indentation (distal fruit end indentation)	0.00	0.00	0.00	1
distal fruit end protrusion (distal fruit end protrusion)	0.00	0.00	0.00	1
eccentricity area index (eccentricity area index)	0.09	0.09	0.09	1
fruit area (fruit area)	35566.63	35566.63	35566.63	1
fruit length mid-width (fruit length mid-width)	202.00	202.00	202.00	1
fruit longest length (fruit longest length)	204.25	204.25	204.25	1
fruit mid-height width (fruit mid-height width)	215.50	215.50	215.50	1
fruit perimeter (fruit perimeter)	708.60	708.60	708.60	1
fruit shape circular (fruit shape circular)	0.99	0.99	0.99	1
fruit shape eccentric (fruit shape eccentric)	0.97	0.97	0.97	1
fruit shape ellipsoid (fruit shape ellipsoid)	0.99	0.99	0.99	1
fruit shape index external (fruit shape index external)	0.94	0.94	0.94	1
fruit shape index external 2 (fruit shape index	0.94	0.94	0.94	1

Trait scoring

Tomato panel (~400 accessions) Incl. Processing, fresh market, heirloom, wild relatives

Phenotyping for breeder traits: Tomato Analyzer Fruit shape Color PH Brix Vitamin C Lycopene sugars

Potato panel (~400 accessions)

Phenotyping:

Specific gravity chip color after cold storage sucrose/glucose Skin texture tuber shape(l/w/h) eyedepth skincolor Flower color Flesh color growth habit total yield etc.

Genotyping (Illumina Infinium chip) Genotyping (Illumina Infinium chip)

THREW IN MUM

Genotyping by Sequencing (GBS)

- Developed by Buckler lab (Elshire, 2011)
- Full genome sequencing too expensive
- Reduce sequence space using restriction
- Use highly multiplexed NGS approach

- Focuses NextGen sequencing power to ends of restriction fragments
- Scores both SNPs and presence/absence markers

Genotyping by Sequencing (GBS)

Storing genotypic data

- Challenge: Extremely voluminous
- 50,000 plants 20,000 markers = 1,000,000,000 datapoints
- Special techniques are needed to store data
 - Relational databases: Compress genotype data into strings
 - Non-relational databases: HDF5

Chado Natural Diversity Schema

Breeding technologies

Genomic Selection

- *K* Remove phenotyping from line development
- "Use markers to model genetic relatedness between lines.
 - . Use relatedness estimates to make predictions
- Use markers as predictors in regression-type models
 - . Use estimated marker effects to make selections

Genomic Selection

(Jean-Luc Jannink)

Integrate Breeding functions

- Store genotypes and phenotypes in the database
 - Calculation of GS models
 - Prediction of phenotypes
- Manage breeding process:
 - Crosses
 - Pedigree tracking
 - Field planting
 - Sample collection
 - Data collection

+ http://solgenomics.net/breeders/home C Q= Google Sol genomics network home forum conta search maps genomes tools Lukas Mueller (log ou Breeder Tools Image: Trials Locations unknown (0 plots)	
sol genomics network home forum conta search maps genomes tools Lukas Mueller (log ou Breeder Tools Trials Locations unknown (0 plots)	
search maps genomes tools Lukas Mueller (log ou Breeder Tools Trials Locations unknown (0 plots)	act help faq
Lukas Mueller (log ou Breeder Tools Trials Locations unknown (0 plots)	sol search
Breeder Tools Trials Locations unknown (0 plots)	t) My SGN
Trials Locations unknown (0 plots)	
Locations unknown (0 plots)	
unknown (0 plots)	
OSU-OARDC Fremont, OH (19739 plots)	
Tidewater. Plymouth, NC (0 plots)	
UofI R&E Center, Aberdeen, Idaho (404 plots)	
Campbell's Soup Company (10930 plots)	
Mills River, North Carolina (3041 plots)	
Hutchinson Drive, Davis CA (8921 plots)	
Add new location Crosses	
Lipload cross file	
View all crosses	
Phenotypes	
Upload	
Phenotype search	
Accessions & plots	
List of accessions:	
Something wrong? Report a problem	

SGN is supported by the NSF (#0116076), USDA CSREES and hosted at the Boyce Thompson Institute.

Conclusions

- Genome databases need to adapt to the needs of breeders
- Genomic technologies applicable to improvement of the breeding process
 - Genotyping by Sequencing
 - Genomic Selection
- Bioinformatics infrastructure required
 - Genome, phenome, & genotypic information, algorithms, breeder functions