

Climate change and food production in Asia

Home of the Green Revolution Established 1960

Jagadish SVK, E Septiningsih, A Kumar, Singh RK

International Rice Research Institute DAPO Box 7777, Metro Manila, Philippines

Rice Science

World

RICE and food security of Asia

Million people on <\$1.25 per day

Global rice demand until 2035

Potential effects of elevated CO₂ and high temperatures on rice

Outline

Progress in adapting rice to

- High temperature stress
- Drought stress
- Submergence
- Salinity
- Companion stresses
- >Global partnership (GRiSP)

High temperature stress Jagadish SVK <u>k.jagadish@irri.org</u>

> Drought stress Arvind Kumar a.kumar@irri.org

Submergence tolerance Endang Septiningsih <u>e.septiningsih@irri.org</u>

> Salinity tolerance Singh RK <u>r.k.singh@irri.org</u>

High temperature stress

Progress in adapting rice to ■High temperature stress ■Drought stress ■Submergence ■Salinity ➤ Companion stresses

Global partnership (GRiSP)

Anthesis and Microsporogenesis – most sensitive stages

Redrawn from Satake & Yoshida, 1978

Is EMF trait useful?

1960 - 2010

Rice Science for a Better

World

Shading and staggered sowing

Materials – Local varieties

Concept – early hours have low radiation and temperature

Comparison – with (EMF) and without (on EMF) shading

Locations – TNAU, IARI-India

N22 a true high temperature tolerant donor

		30°C	35°C	38°C
Azucena	S	66.1	23.4	02.9
Bala	Т	89.8	81.4	40.6
CG 14	MT	89.6	71.7	19.1
Co 39	Т	86.1	83.5	40.5
IR 64	MT	93.2	68.3	18.7
Moroberekan	S	83.3	39.9	06.4
N22	HT	95.6	91.3	63.7
WAB 56-104	S	94.6	76.0	19.2

Jagadish et al., 2008, Crop Sci., 48:1140-1146

N22 two most tolerant accessions identified

>N22 tolerant at microsporogenesis stage

>N22 most tolerant to high night temperature under field (Peng et

al., UnPub) and under controlled environments (Coast et al., UnPub)

Rice

Science for a Better

World

Physiological processes determining spikelet fertility

Moroberekan stress

Moroberekan control

Moroberekan stress

N22 control

N22 stress

Jagadish et al., 2010, J Ex Bot, 61, 143–156

Jakobabad, Pakistan

High temperature and humidity interaction (VPD)

Weerakoon et al., 2008 J. Agron. & Crop Sci., 135-140

Bangladesh (Hot and humid) Courtesy – Dr Masuduzzaman, BRRI

Rice

Science

for a Better

World

Night temperature and rice

High night temperature and maintenance respiration

High night temperature tents

Recent findings

- -43 entries screened
- -Contrasting entries identified
- -In susceptible entry
 - Spikelet fertility not reduced
 - Biomass, N, NSC reduced
 - Rate of grain filling reduced
 - Grain width reduced
 - Quality deteriorated
- Flag leaf and panicles proteomics at 100% flowering and 12 DAF flowering and 43 proteins sequenced

Rice

Science for a Better

World

Rice growing regions vulnerability

Improvements -Day and night -Daily temperature -Global planting dates -Incorporating RH?

Laborte, Nelson et al.

Drought stress

Progress in adapting rice to

High temperature stress
Drought stress
Submergence
Salinity

≻ Companion stresses
>Global partnership (GRiSP)

Drought Research at IRRI: Strategy

Conventional approaches

- Use improved pre-breeding lines as donors
- Direct selection for grain yield
- Combine high yield with good yield under drought
- Confirm performance in multi location testing in target environment-Drought breeding network

Molecular approaches

- Use traditional/wild donors in mapping populations
- Identify major drought yield QTLs
- Introgress QTLs in improved drought susceptible varieties

Rice Science for a Better World

•Physiological and molecular mechanism of QTLs drought tolerance

Submergence and Salinity stress

Progress in adapting rice to
High temperature stress
Drought stress
Submergence
Salinity

Companion stresses
Global partnership (GRiSP

QTL mapping for submergence tolerance

SUB1 QTL: R² = ~ 70%, Chr.
9, from FR13A (Xu and Mackill, 1996)

•Cloned as a cluster of 3 ERF genes: *SUB1A*, *SUB1B*, and *SUB1C* (Xu et al., 2006)

First six Sub1 mega-varieties developed

Sub1 variety	Gen.	Fixed line names
Swarna-Sub1	BC2	IR 05F101
	BC3	IR 05F102
Samba Mahsuri-Sub1	BC2	IR 07F101
	BC3	IR 07F287
IR64-Sub1	BC2	IR 07F102
	BC3	IR 07F292
TDK1-Sub1	BC3	IR 07F289
CR1009-Sub1	BC2	IR 07F291
BR11-Sub1	BC2	IR 07F290

- Swarna-Sub1, IR64-Sub1, BR11-Sub1, Samba Mahsuri-Sub1, and TDK1-Sub1 have been released in several countries
- More Sub1 varieties developed, such as Ciherang-Sub1 and PSBRc18-Sub1

Neeraja et al. TAG (2007) Septiningsih et al. Ann Bot. (2009) Iftekharuddaula et al. Euphytica (2011)

Rice Science for a Better World

1960 - 2010

Tolerance to anaerobic germination (AG) for direct seeding ecosystem

- Capability of seeds to germinate and elongate under hypoxia (low oxygen) or anoxia (no oxygen).
- Direct seeding is becoming more popular among farmers in both rainfed and irrigated ecosystems.
- An effective means of weed control in irrigated areas.
- Improving crop establishment due to unleveled fields or flash floods after direct seeding.
- Tolerance to AG is independent of SUB1.

Multiple abiotic stress tolerance

Progress in adapting rice to •High temperature stress •Drought stress •Submergence •Salinity

Companion stresses

Global partnership (GRiSP)

Abiotic and biotic stress interactions

Rice Science for a Better World

Mittler, 2006

Mapping heat and drought tolerant regions of South and SE Asia

Bangladesh, eastern India, southern Myanmar, and northern Thailand

Jagadish et al., FPB, 2011, 38, 261–269

2 in 1: Submergence + salinity tolerance

"2-in-1" rice, combined tolerance of salinity and submergence is now being evaluated in target sites in Asia.

10 days submerged in saline water

IRRI

-2010

Rice Science for a Better World Sub1 only

SalTol+ Sub1

Major rice deltas and sea level rise

52, 10 1 2 1 1 2 8 8 8 P

Rice

World

Different RH regimes and seedling growth under salt stress

CGIAR Thematic Area 3: Sustainable crop productivity increase for global food security A Global Rice Science Partnership

An evolving alliance of IRRI, AfricaRice & CIAT with Cirad, IRD, JIRCAS and hundreds of research and development partners worldwide

Rice Science for a Better World

AfricaRice

Financial support

BILL& MELINDA GATES foundation

BMZ & Federal Ministry for Economic Cooperation and Development

The Lee Foundation Rice Scholarship Program

http://www.grisp.net

Your next discovery could be the answer to food insecurity

Apply now for a 2011 Global Rice Science Scholarship.

A rice scholarship for scientists pursuing their Ph.D.

IRRI 🖉 🏧 🦸 cirad 🛞 AfricaRice 💷

http://grisp.irri.org/Global RiceScience-Scholarships