

OUTLINE

INTRODUCTION

OBJECTIVES

MATERIALS AND METHODS

Mass Rearing of the Red Spider Mites, Tetranychus kanzawai

Test Fungi

Study 1. <u>Screening of the Entomopathogenic</u> Fungi against *T. kanzawai*

Bioassay Tests for Virulence Laboratory Screening Koch's Postulates

Transmission of Fungal Infection between Mites

Green House Bio-assay

Study 2. Characterization of the Selected Entomopathogenic Fungi

ITS Amplification

RESULT AND DISCUSSION

Study 1. Selection of the Most Pathogenic Isolates

Koch's Postulates

Transmission of Fungal Infection between Mites

Transmission through a Contaminated Surface

Efficacy of Selected Entomopathogenic Fungi in the Greenhouse

Study 2. Characterization of the Entomopathogenic Fungi

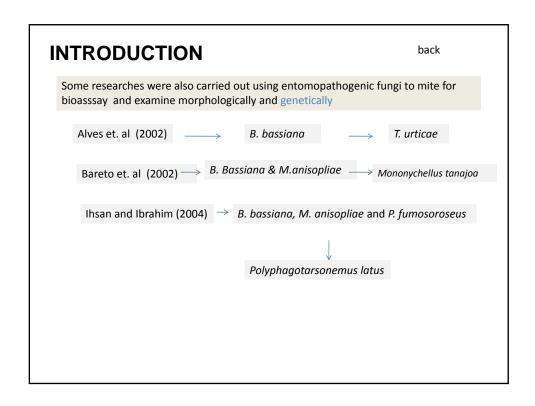
Infection Process

Characterization and Identification of Entomopathogenic Fungi

using ITS Sequence
Phylogram

SUMMARY AND CONCLUSION

INTRODUCTION

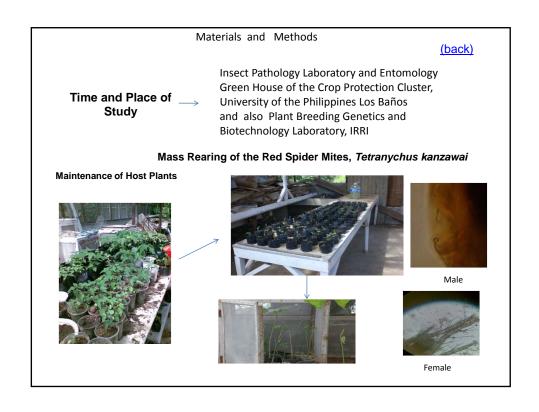

(back)

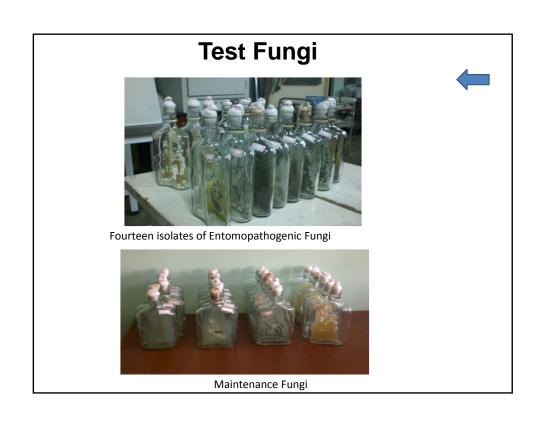
Spider mite (Tetranychidae) is widely distributed as well in the Philippines and Indonesia. *T. kanzawai* is one important throughout East and South Asia and is a polyphagous mite.

In the Philippine it commonly infests cassava and papaya plants The mites attack and severely damage the older leaves of <u>papaya</u> and sometimes, its seedlings.

Application of entomopathogenic fungi is an important factor in Integrated Pest Management (IPM) concerning safety of environment. There are some advantages in using these

next

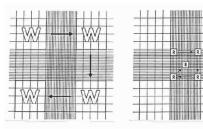



OBJECTIVES

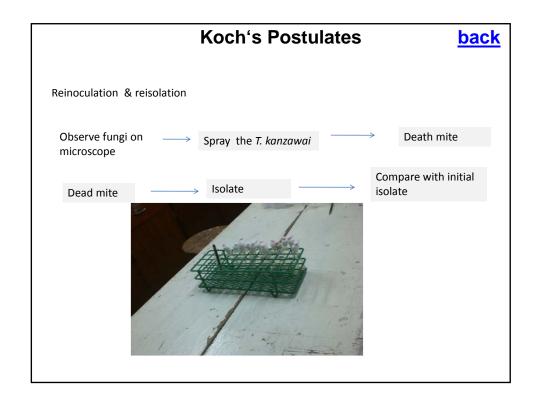
(back)

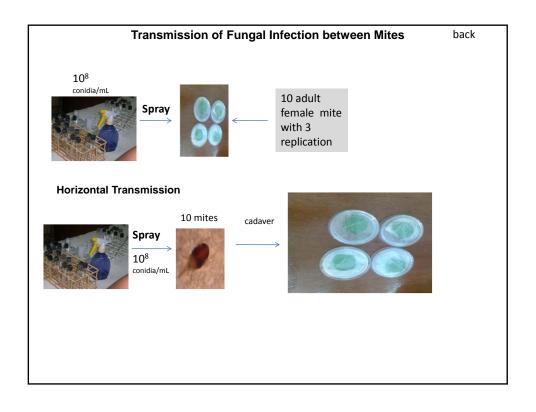
Specifically, this study

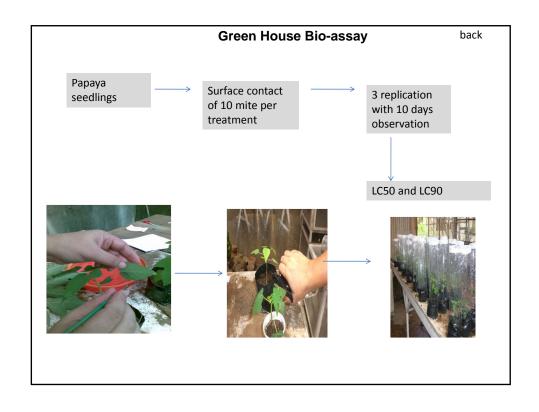
- •Screened the entomopathogenic fungi *M. anisopliae*, *B. bassiana* and *P. lilicanus* to *T. kanzawai*;
- •Investigated the transmission process through surface contamination and through infected *T. kanzawai*;
- •Investigated the efficacy of selected entomopathogenic fungi against *T. kanzawai* in the green house; and
- •Characterized the most virulent entomopathogenic fungi against *T. kanzawai* using morphological and molecular techniques

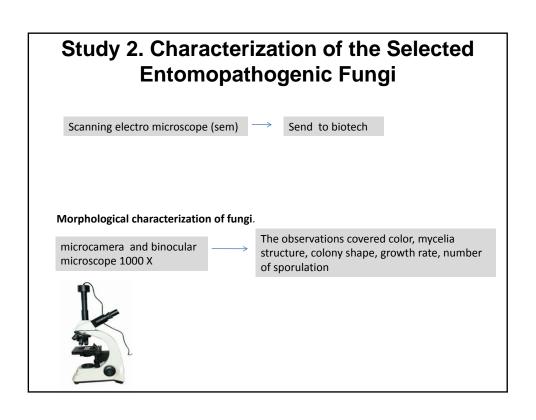


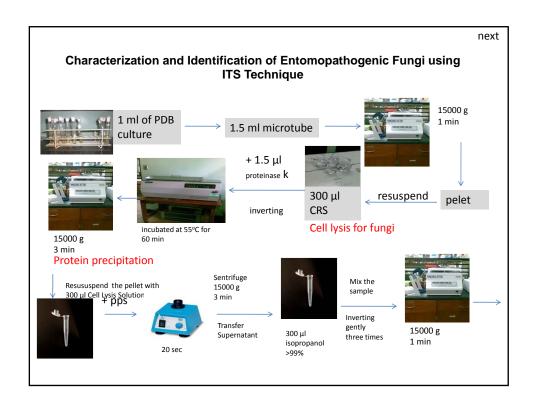
Study 1. Screening of the Entomopathogenic Fungi against *T. kanzawai*

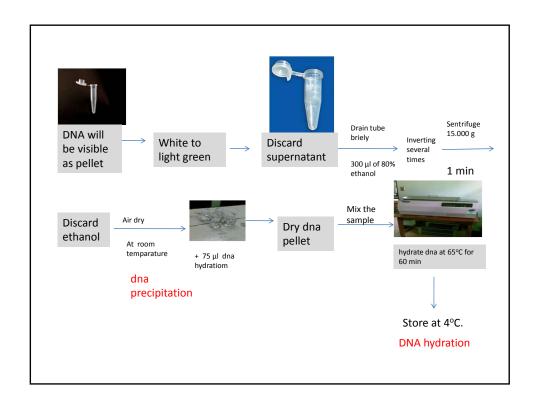


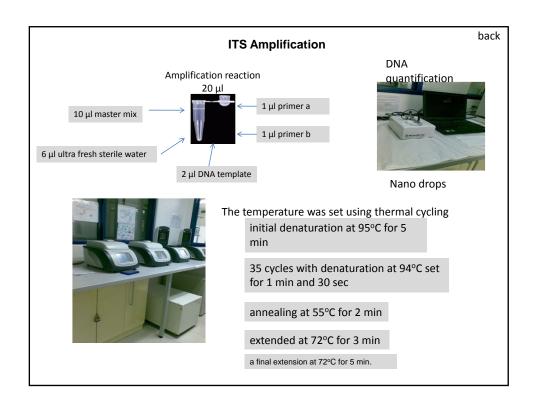


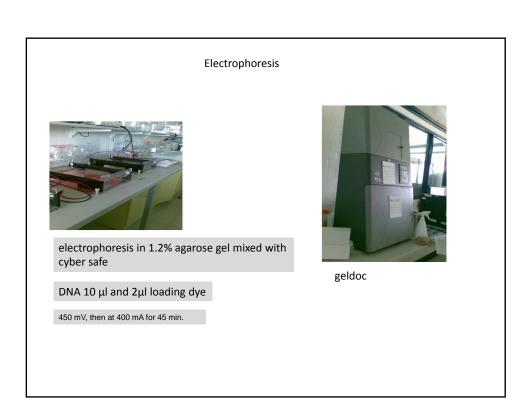



Cell concentration per milliliter = Total cell count in 4 squares x 2500 x dilution factor Cell concentration per milliliter = Total cell count in 5 squares x 50,000 x dilution factor


Bioassay Tests for Virulence Laboratory Screening back **Preliminary** phase. 10 adult spray female mite with 3 replication Five series dilution 104 - 108 conidia/mL Final phase. Eight series dilution 10 adult $10^1 - 10^7$ female mite conidia/mL with 3 replication







next

RESULT AND DISCUSSION

Study 1. Selection of the Most Pathogenic Isolates

. Mean of mortality of *T. kanzawai* on 5th day after treatment with 14 isolates of entomopathogenic fungi

-			Concer	tration			_
FUNGAL ISOLATES	0	1.0 x 10 ⁴	1.0 x 10 ⁵	1.0 x 10 ⁶	1.0 x 10 ⁷	1.0 x 10 ⁸	Mean
Ma1	0.00	18.00	20.50	24.33	26.00	28.00	19.47 ^{cde}
Ma2	0.50	18.17	20.67	24.00	26.67	28.50	19.75 ^{cd}
Ma3	0.33	15.83	19.00	23.33	26.17	28.17	18.81e
Ma4	0.67	19.83	22.33	26.17	28.50	29.17	21.11b
Ma5	0.67	21.00	24.67	27.33	28.67	29.50	21.97a
Ma6	0.50	20.67	23.00	26.50	28.00	29.33	21.33ab
Ma7	0.20	15.17	17.33	22.00	24.67	27.00	17.73f
Bb1	0.33	14.67	17.17	17.17	22.00	25.50	$16.14^{\rm f}$
Bb2	0.33	15.00	17.83	20.67	24.17	26.33	17.39 ^f
Bb3	0.45	17.72	20.39	23.31	26.00	27.81	19.28f
Bb4	0.50	16.83	19.17	24.00	27.33	28.67	19.42e
Bb5	0.17	17.83	19.83	23.67	27.00	28.50	19.50°
Bb6	0.33	17.50	19.17	23.17	27.00	28.83	19.33de
Pl	0.50	14.33	16.67	20.17	24.67	27.00	$17.22^{\rm f}$
	0.39A	17.33 B	19.84 C	23.27 D	26.20 E	28.02 F	

Means with the same letter are not significantly at Duncan $\,0.05\,$

Refined LC₅₀ Values for the 7 Selected Isolates

back

 $\label{eq:conidiam} \textbf{Table . LC}_{50} \ \text{values (conidia/ml) of 7 entomorathogenic fungi at } 5 \ \text{days after application on } \textit{T. kanzawai} \ \text{adult females}$

SPECIES	LC 50	FIDUCIAL LIMITS	SLOPE
M. anisopliae 4	1441.13	664.70 – 2905.71	.338+028
M. anisopliae 5	722.00	312.27 - 1502.98	.332+028
M. anisopliae 6	496.46	225.39 – 97.29	.363+028
P. lilacinus	17775.56	9241.89 - 34819.90	.358+028
B. bassiana 4	2348.58	1110.42 - 5046.76	.318 +027
B. bassiana 5	1959.63	902.69 - 3988.75	.330+028
B. bassiana 6	1161.92	590.23 - 2153.39	.392+029

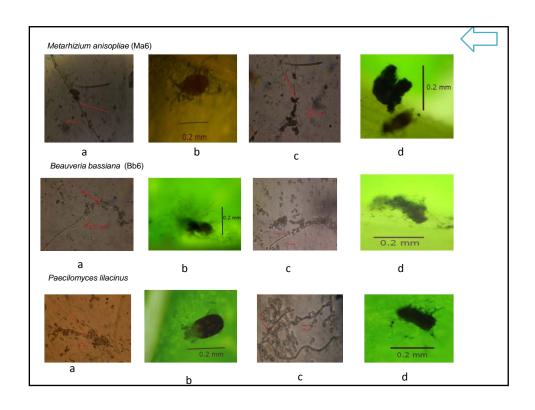
Table . LC₉₈ values (conidia/ml) of 7 entomopathogenic fungi at 5 days after application on *T. kanzawai* adult females

SPECIES	LC ₉₈	FIDUCIAL LIMIT
M. anisopliae 4	9.7 X 10 ⁸	1.6 X 108 to 1.1 X 109
M. anisopliae 5	6.0 X 10 ⁸	1.0 X 10 ⁸ to 7.1 X 10 ⁹
M. anisopliae 6	1.3 X 10 ⁸	$3~0~~\mathrm{X}~10^{7}~\mathrm{to}~9.4~~\mathrm{X}~10^{8}$
P. lilacinus	55 X 10 ⁸	$8.8 \times 10^7 \text{ to } 12.2 \times 10^{10}$
B. bassiana 4	3.8 X 10 ⁸	$5.0~{ m X}~10^{8}~{ m to}~6.0~{ m X}~10^{10}$
B. bassiana 5	1.9 X 10 ⁸	2.9 X 108 to 25.4 X 109
B. bassiana 6	1.2 X 10 ⁸	3.0 X 10 ⁷ to 7.4 X 10 ⁸

Refined LC₅₀ Values for the 7 Selected Isolates

Table 4. Mean of mortality of *T. kanzawai* on 5th day after treatment with 7 isolates of entomopathogenic fungi

				CONCE	NTRATION				_
FUNGI ISOLATE	0	1.0 X10 ¹	1.0 x 10 ²	1.0 x 10 ³	1.0 x 10 ⁴	1.0 x 10 ⁵	1.0 x 10 ⁶	1.0 x 10 ⁷	Mean
Ma4	0.33	8.00	10.83	14.17	16.67	20.33	25.67	28.17	15.52
Ma5	0.50	9.67	11.50	15.50	18.00	20.50	25.67	29.33	16.33
Ma6	0.67	9.00	12.67	16.17	18.50	22.50	27.17	29.50	17.02
Bb4	0.33	7.83	10.00	13.67	15.67	19.17	24.00	27.83	14.81
Bb5	0.50	8.00	10.33	14.00	16.00	18.83	25.00	28.33	15.13
Bb6	0.50	6.83	11.33	14.50	17.33	21.83	26.33	29.67	16.04
PI	0.83	3.33	7.00	9.67	14.67	17.00	21.33	26.00	12.48
Means with the	e same letter	are not significa	antly at Dunc	an 0.05					
Mean	0.52A	7.52B	10.52C	13.95D	16.69E	20.02F	25.02G	28.40H	


Koch's Postulates

*Conidiophores of three *Metarhizium* isolates aggregated in dense tuft with repeated, more or less, verticillate branching on Ma4 and Ma6, with Ma5 having the most tufts.

*Mycelia grew on Bb4, Bb5 and Bb6. Conidia hyaline had a barely yellowish color, smooth, globose to broadly ellipsoidal, sometimes with an apiculate base.

*P. lilacinus showed a cottony-textured colony on PDA. Spores which were pinkish in color could be seen covering the whole body of the cadaver.

Transmission of Fungal Infection between Mites

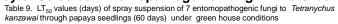
Horizontal Transmission

Table . LT_{50} value (days) of 7 entomopathogenic fungi to $\it{T. kanzawai}$ female adults through contact through diseased mittes under laboratory condition

NO.	NAME	CODE	LT 50 (CADAVER)	FIDUCIAL LIMIT 50 %	SLOPE
1.	M. anisopliae	Ma4	3.02	2.737 to 3.324	3.641+355
2.	M. anisopliae	Ma5	2.88	2.596 to 3.140	3.811+362
3.	M. anisopliae	Ma6	2.91	2.631 to 3.199	3.654+354
4.	P. lilacinus	Pl	4.15	3.754 to 4.653	3.399+385
5.	B. bassiana	Bb4	3.42	3.128 to 3.723	4.125+405
6.	B. bassiana	Bb5	3.32	3.044 to 3.618	4.197+406
7.	B. bassiana	Bb6	3.21	2.921 to 3.518	3.817+374

The LT $_{50}$ values for *T. kanzawai* mites as shown in Table 6, ranged from 2.88 to 4.150 days. The LT $_{50}$ values were lower for Ma isolates than Bb isolates and the highest LT $_{50}$ value was for *P. lilacinus*.

Transmission through a Contaminated Surface


Table 8. .LT₅₀ value (days) of 7 entomopathogenic fungi to *T. kanzawai* female adults through contact with contaminated surface under laboratory condition

NAME		CODE	LT50 (SURFACE)	FIDUCIAL LIMIT	SLOPE
M. anisopliae	4	Ma4	2.87	2.613 to 3.136	4.065+374
M. anisopliae	5	Ma5	2.55	2.286 to 2.807	3.613+339
M. anisopliae	6	Ma6	2.22	1.977 to 2.462	3.591+335
P. lilacinus		Pl	4.21	3.847 to 4.645	3.941+435
B. bassiana	4	Bb4	3.42	3.127 to 3.731	4.050+400
B. bassiana	5	Bb5	3.25	2.965 to 3.553	3.952+382
B. bassiana	6	Bb6	2.98	2.717 to 3.240	4.228+374

Three fungal species were found to have potentials within the value range of 2.223 - 4.206. The highest LT_{50} value was found in *P.lilacinus* (4.206) which was statistically different to others. The lowest LT_{50} value was found in *M. anisopliae* 6 (2.223) while others were not significantly different.

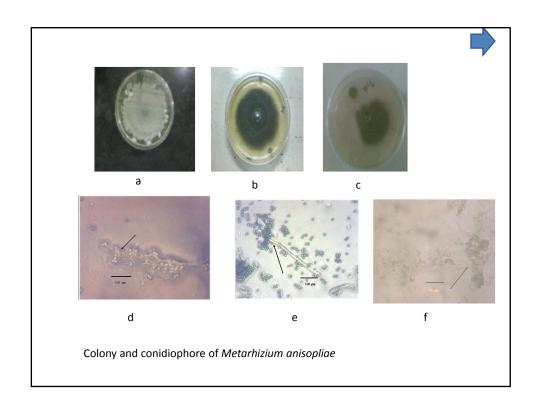
Efficacy of Selected Entomopathogenic Fungi in the Greenhouse

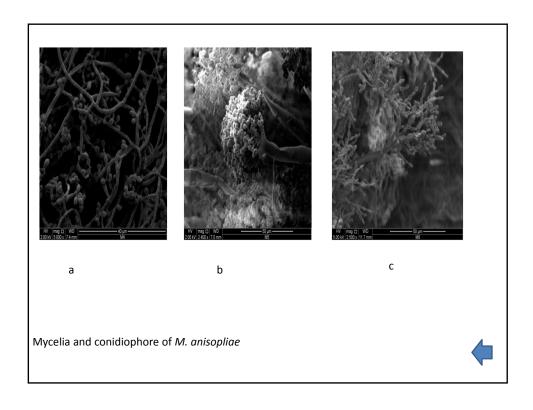
NAME	LT50	FIDUCIAL LIMIT	SLOPE
M. anisopliae 4	3.97	3.674 to 4.258	3.423 + 0.229
M. anisopliae 5	3.63	3.341 to 3.917	3.275 + 0.219
M. anisopliae 6	3.54	3.260 to 3.805	3.495 +0.229
P. lilacinus	6.14	5.783 to 6.528	3.979+0.292
B. bassiana 4	4.93	4.552 to 5.331	3.863+0.260
B. bassiana 5	4.53	4.261 to 4.806	4.265+0.280
B. bassiana 6	4.18	3.858 to 4.492	3.729+0.492

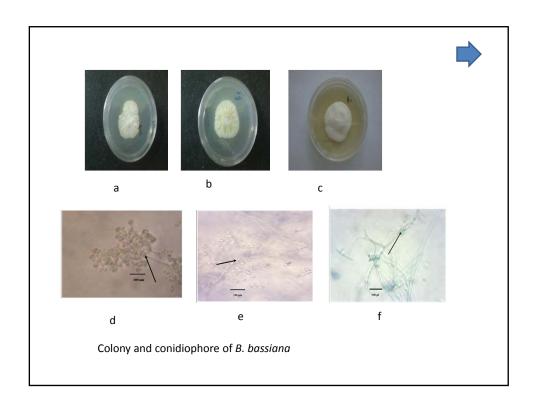
Table 10. LT_{90} values (days) of spray suspension of 7 entomopathogenic fungi to *Tetranychus kanzawai* through papaya seedlings (60 days) under green house conditions

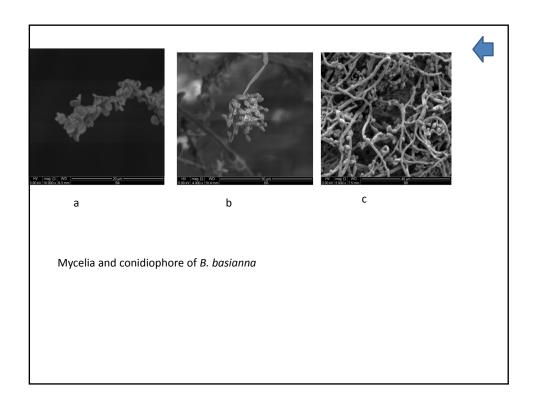
NO.	NAME	CODE	LT90	FIDUCIAL LIMIT
1.	M. anisopliae	Ma4	9.38	8.470 to 10.627
2.	M. anisopliae	Ma5	8.95	8.068 to 10.150
3.	M. anisopliae	Ma6	8.23	7.485 to 10.150
4.	P. lilacinus	Pl	12.89	11.508 to 14.918
5.	B. bassiana	Bb4	10.60	9.381 to 12.444
6.	B. bassiana	Bb5	9.05	8.330 to 10.018
7.	B. bassiana	Bb6	9.22	8.300 to 10.507

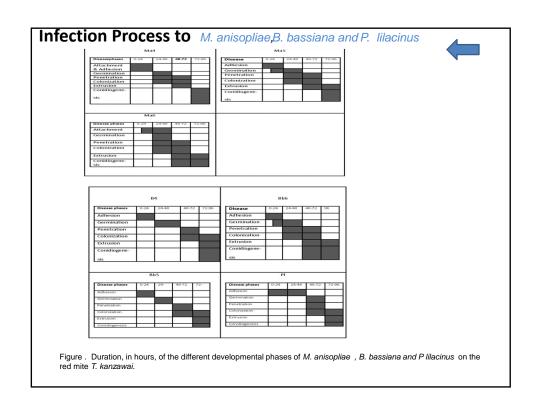
Table 9 and 10. LT₉₀ values (days) of spray suspension of 7 entomopathogenic fungi to *Tetranychus kanzawai* through papaya seedlings (60 days) under green house conditions. Green house experiment results indicate that pathogenic fungi have great potential for control of *T. kanzawai*. The LC₉₀ of *T. kanzawai* infected with all isolates ranged from 8.23 to 12.89 among experimental units. These data show that the LC90 was more or less the same prior to the trial except on *P Illacinius*. The lowest LC50 (12.89) was observed at the plots treated with *P. lilacinus* while the highest was found on Ma6 (8.23).

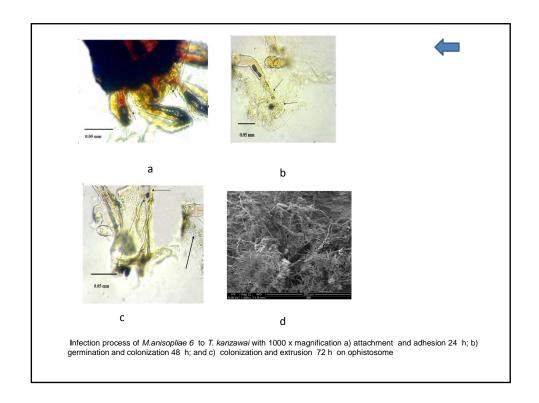

Mean of mortality of *T. kanzawai* on 5th day after treatment with 7 isolates of entomopathogenic fungi

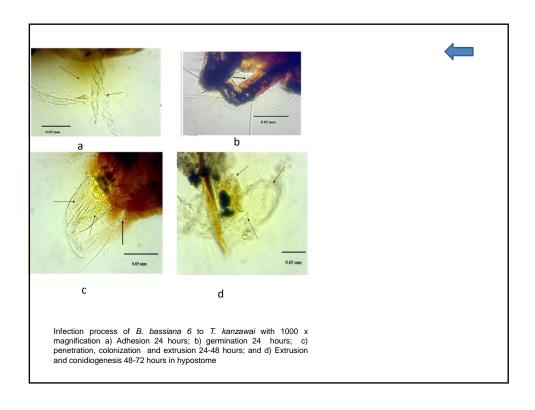

_		_			
FUNGI ISOLATE	0.00	1x 10 ⁶	1 X 10 ⁷	1 X 10 ⁸	MEAN
Ma4	0.00	6.33	7.89	9.00	5.81b
Ma5	0.00	7.11	8.56	9.22	6.22a
Ma6	0.00	7.67	9.11	9.89	6.67a
B4	0.00	5.89	7.22	8.11	5.31c
B5	0.00	6.56	8.00	8.78	5.83b
B6	0.00	7.33	8.44	9.56	6.33a
PI	0.00	5.33	7.00	7.67	5.00d
MEAN	0.00 A	6.60 B	8.03 C	8.89 D	

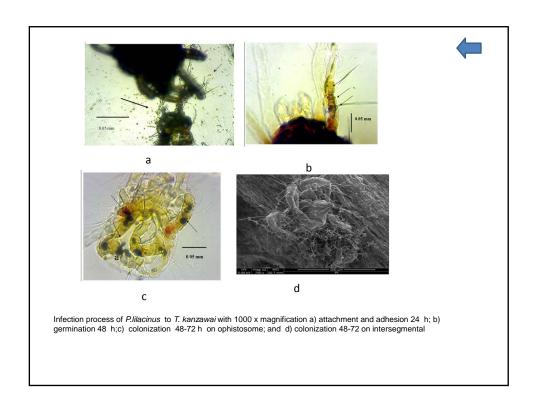

Means with the same letter are not significantly at $\,Duncan\,\,0.05$

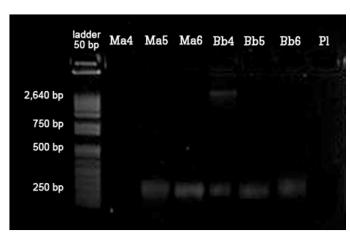


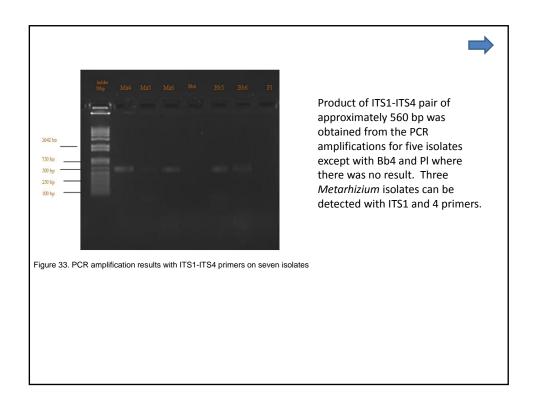


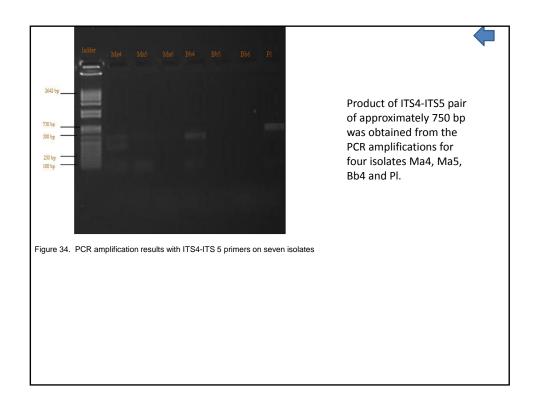


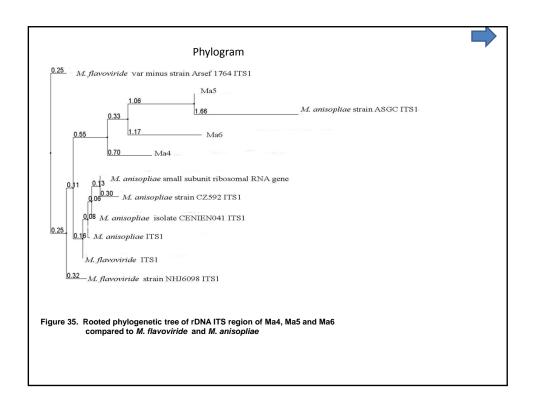


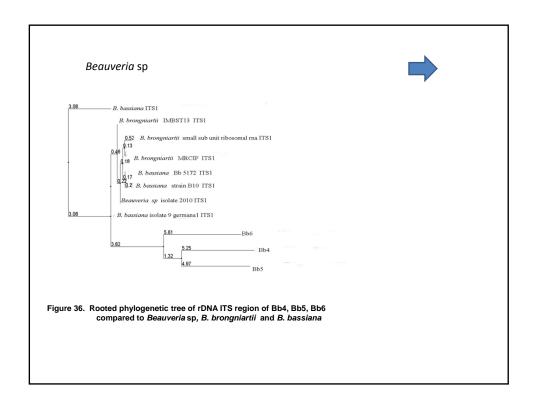


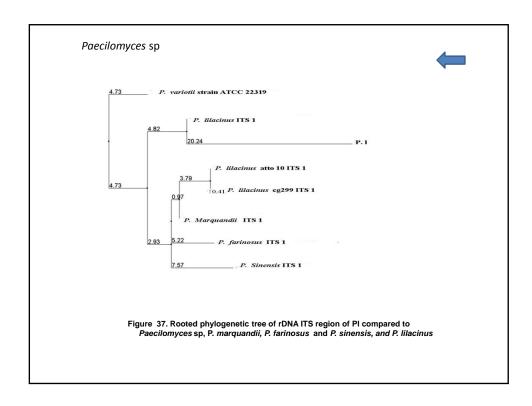









PCR amplification results with ITS1-ITS 2 primers on 7 isolates

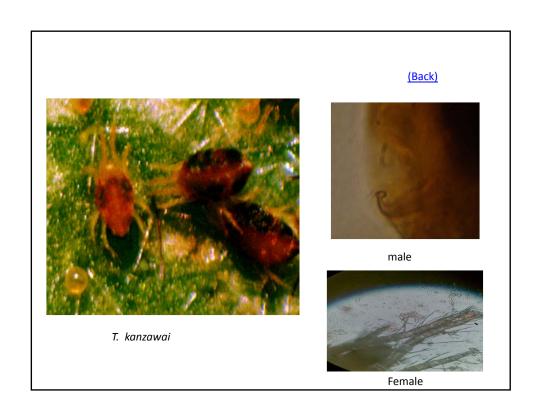

Product of ITS1-ITS2 pair of approximately 200 bp was obtained from all the PCR amplifications for five isolates except with Ma4 and PI which had no product result of three *Beauveria* isolates that can be detected with ITS1 and 2 primers.

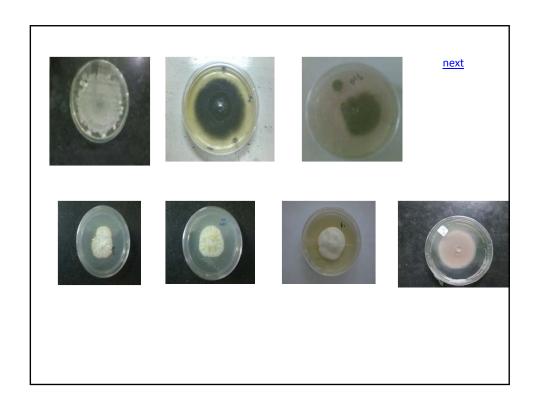
SUMMARY AND CONCLUSION

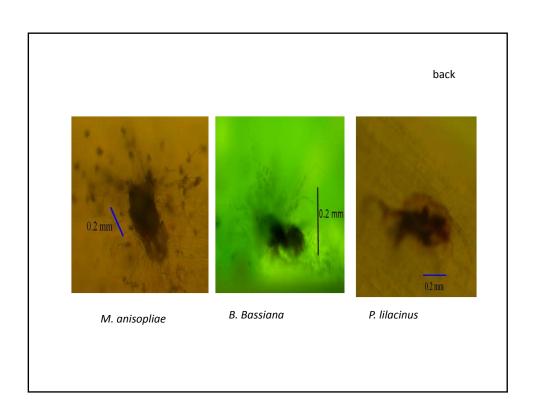
- ➤ The 14 most pathogenic isolates of *M. anisopliae* at 5 DAT in order of decreasing pathogenecity were Ma5>Ma6>Ma3>Ma2>Ma1>Ma3>Ma7. For *B. bassiana*, Bb5>Bb6>Bb4>Bb3>Bb1>Bb2.
- \succ The refined LC $_{50}$ values The most pathogenic isolates remained to be Ma5>Ma6>Ma4 and Bb6>Bb5>Bb4

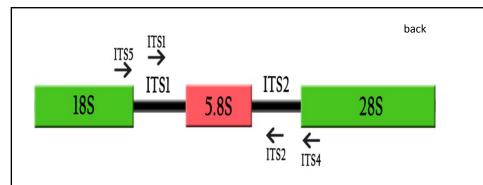
Reinoculation and reisolation from infected *T. kanzawai* with definite signs of infection were observed among insects treated with seven isolates demonstrating its entomopathogenic capacity

 \succ The LT₅₀ values ranged from 2.865 to 4.150 days. The LT₅₀ values were lower for Ma isolates than Bb isolates and the highest LT₅₀ value was for *P. lilacinus*.

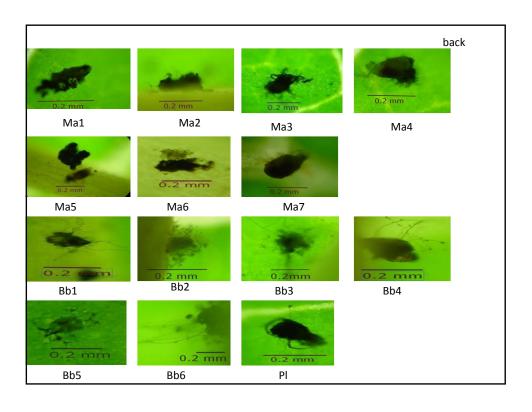


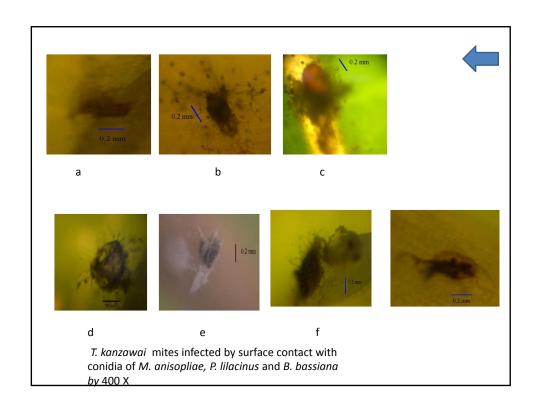

- ➤ Greenhouse experiment results is The LC₉₀ of *T. kanzawai* infected with all isolates ranged from 8.23 to 12.82 among experimental units.
- ➤ Infection process showed attachment, germination and fungal form *M. anisopliae 5, M. anisopliae* isolate 6 and *Beauveria bassian*a 6 were the fastest to infect mite
- ➤ All *M. anisopli*ae had cylindrical shapes with different characteristic. *B.* bassiana had a globose with variation of characteristic and *Paecilomyces* is characterized by having flasked phialides or phialides with swollen base structure; the phialides taper into a distinct neck and generate conidia that are dry and hyaline or slightly pigmented.

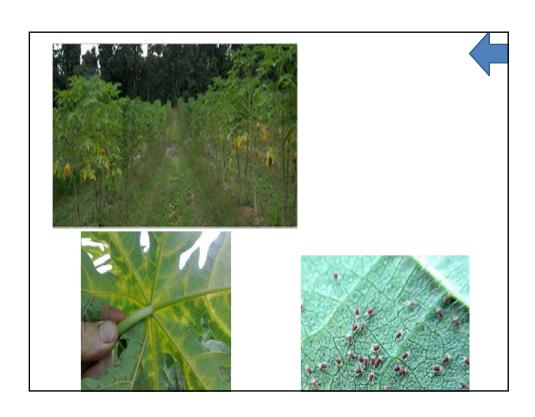


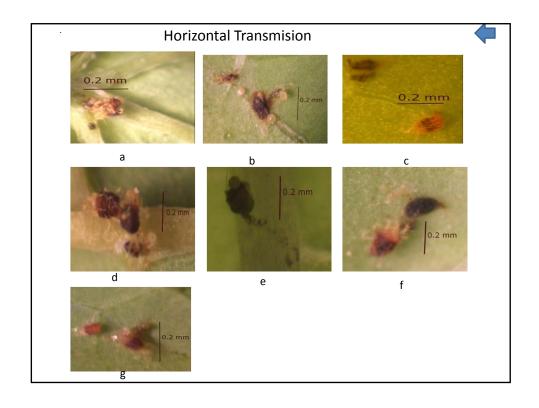

- ➤ Further analysis were confirmed molecularly by subjecting to polymerase chain reaction (PCR) amplification with set of ITS primers (ITS1, ITS2, ITS4, and ITS5) which are commonly used among fungal species. Lengths of amplified fragments of the two isolates were approximately 200bp, 560bp and 750bp, respectively.
- ➤ Alignment sequence showed that isolate Ma4, Ma5, Ma6 had close similarity with Metarhizium anisploliae. The analyses indicated that Bb4, Bb5, Bb6 had close related to *B. bassiana* isolates. A dendrogram showed that *PI* is close similar with *P. lilacinus*

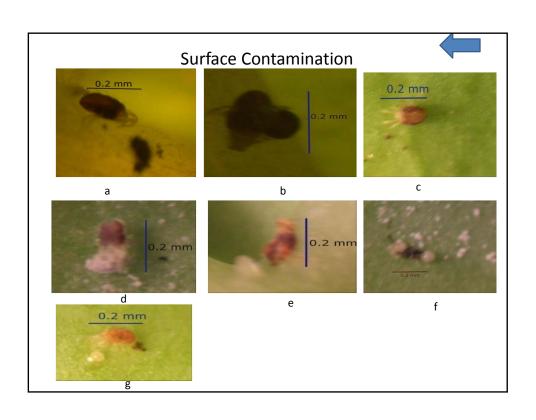
THANK YOU VERY MUCH SALAMAT PO










Genetic map of the rDNA region of fungi showing the ITS regions (ITS1 and ITS2), nested between highly conserved ribosomal genes 18s, 5.8s, and 28s (White et al., 1990). Arrows represent positions of the ITS1, ITS2, ITS4, and ITS5 primers.

