

INTRODUCTION

populations rise

intensification of livestock production

problem of emerging and reemerging zoonotic diseases

EMERGING AND RE-EMERGING ZOONOSES

Important global issues on:

- public health
- sustaining food security
- biosafety both in man and animal Special attention
 - unique population affected by the livestock industry

households who engage in smallholder livestock farming

Issues on Livestock Production

Two main types of human health risks:

- 1. diseases transmitted from livestock to humans
 - body fluids & excreta
 - products like raw milk / eggs / meat
- 2. diseases transmitted from polluted environment

Situationer

Smallholder livestock farmers in the Philippines

- minimal methods of protection from getting infected from animal diseases
- poorly informed on the prevention of zoonoses spread to neighboring farms and communities

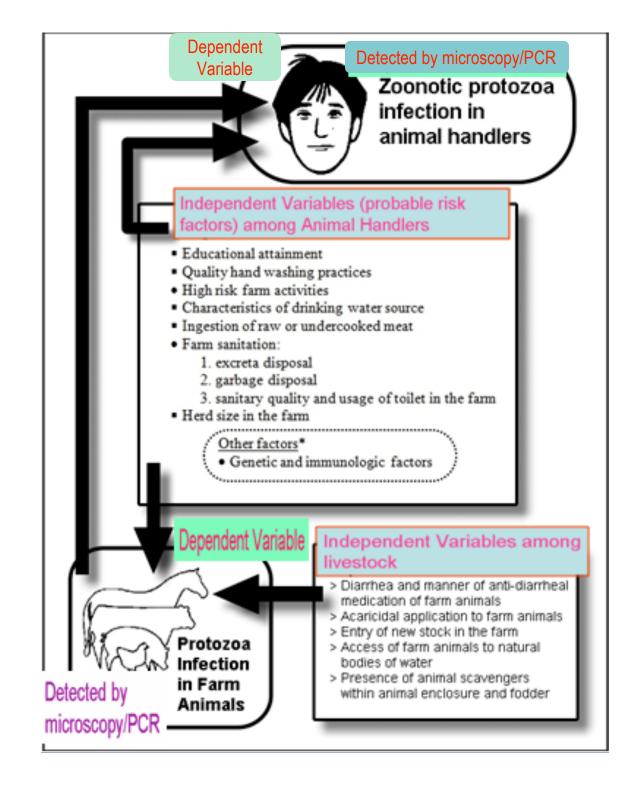
Needs

As of to date, no information

- prevalence of blood, enteric and tissue protozoan infections affecting both man and animals in Aurora province
- ➤ need to determine association of factors that contribute to the risk of zoonotic disease transmission among animal handlers & livestock animal

Objectives

- Determined the prevalence (point & confidence interval) of zoonotic pathogenic protozoa among animal handlers engaged in small holder livestock farming and their livestock in Aurora province by microscopy and PCR.
 - arthropod-borne
 Babesia microti and Trypanosoma evansi;
 - water-borne/fecal-oral borne
 Balantidium coli, Blastocystis hominis, Cryptosporidium parvum, Entamoeba histolytica/dispar, Giarda lamblia
 - food-borne
 Sarcocystis spp, and Toxoplasma gondii



Determined the association of several probable exposure factors to zoonotic disease transmission between humans and their animals.

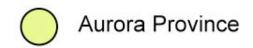
➤ Recommend public health measures to prevent and control these zoonotic protozoan infections.

Conceptual Framework

Materials and and Methods

Study Design: cross-sectional, analytic design

Study Area: Aurora province


Baler, Ma.Aurora and San Luisrepresent the most number of livestock population in the province

Study Population- Systematic sampling method was used in selecting the respondents/farm owners

Sample Size Determination:STATCALC of EPI-INFO 6

Areas Covered

Sample Size

based on the **lowest** expected prevalence of zoonotic protozoa reported in the Philippines and other Asian countries.

Sample size = power of 80 and 95% C.I.

Sample size requirement for animal handlers

Variables	n (sample size)
Prevalence of infection	284
Educational attainment of animal handler	328
Quality of hand washing practice	360
High risk farm activities	340
Exposure to fecal contaminated drinking water	340
Ingestion of raw and under cooked meat	340
Excreta disposal practice	340
Garbage disposal practice	360
Usage of sanitary toilet facility in the farm	340
Herd size of farm	360

For 9 possible risk exposure variables,

- additional 10 percent of the sample size for each variable was added
- sample size increased by 324 more.

Therefore, n = 684

- number of animal handlers which represented 684 small holder farms randomly sampled from all three municipalities.

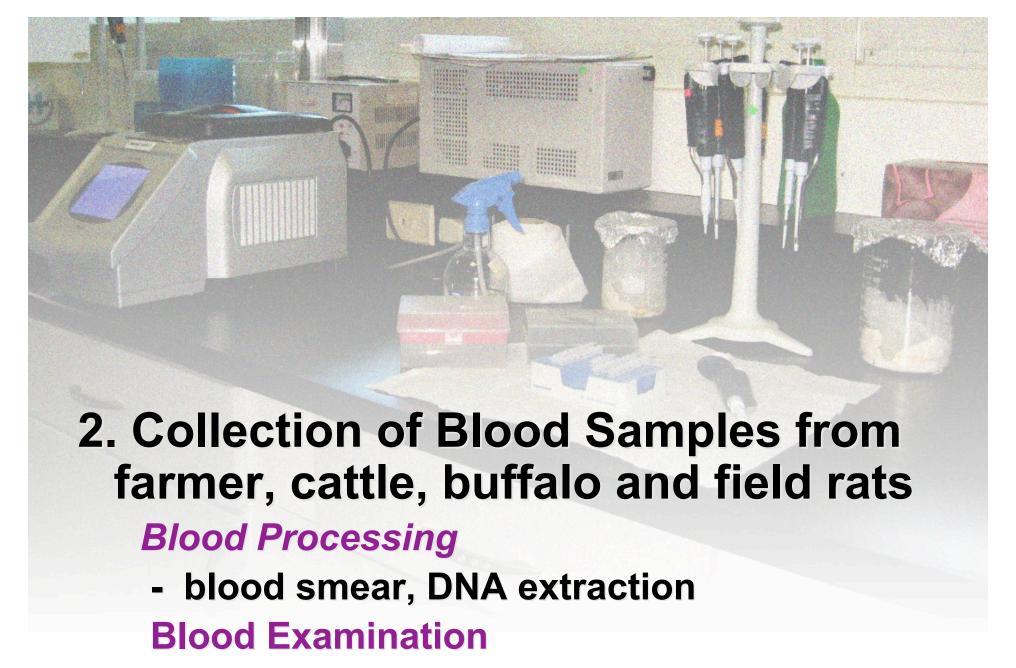
Sample Size Requirement for Livestock in the Study

Parameters	Cattle	Swamp Buffalo	Goat	Pig	Dog	Stray Cat	Native Chicken
Total Population	2529	2973	3516	17000	15000	1000	26,161
Size in the 3							
Municipalities							
Expected	5%	5%	5%	25%	5%	7.3%	3.0%
Prevalence					, , ,		
Worst	0.15%	0.15%	0.15%	0.15%	0.15%	0.15%	0.15%
Acceptable							
Error							
Level of	95%	95%	95%	95%	95%	95%	95%
Confidence				**			
Sample	75	76	76	12	36	51	137
Size							

For 5 potential possible risk exposure variables,

- additional 10 percent of the sample size for each variable was added

Therefore,


- For each type of mammalian livestock, n = 114
- For chickens, n = 206

Data Collection- scheduled interview using structured questionnaire

- > Risk variables to animal handlers
- >Risk variables to farm animals

- microscopy and PCR

A. Descriptive Analysis

- > Frequency distribution of variables
 - STATA version 8.0 statistical software
- Prevalence of the different zoonotic protozoa according:
 - 1. risk variables for animal handlers
 - 2. farm animals by species
 - STATA version 8.0 statistical software

B. Inferential Analysis

Associations between the outcome and independent variables

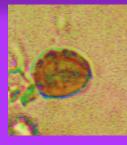
- 1. crude analysis (odds ratio)
- 2. multivariate analysis using logistic regression.

RESULTS AND DISCUSSION

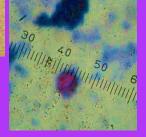
Characteristics of the Animal Handlers

The males
 dominate livestock
 raising throughout
 the three
 municipalities

• starting ages 37 years onwards.

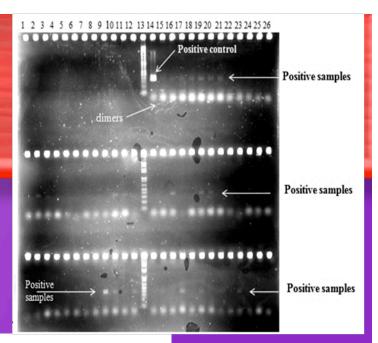


Prevalence of Protozoa Infection among Animal handlers


Four zoonotic protozoa identified in the feces of 678 animal handlers.

Blastocystis hominis

· Cryptosporidium parvum

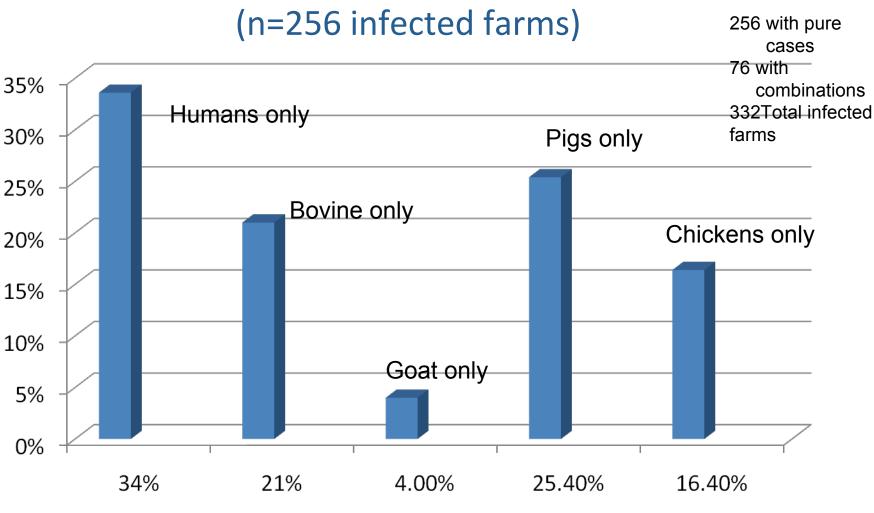


• Entamoeba histolytica

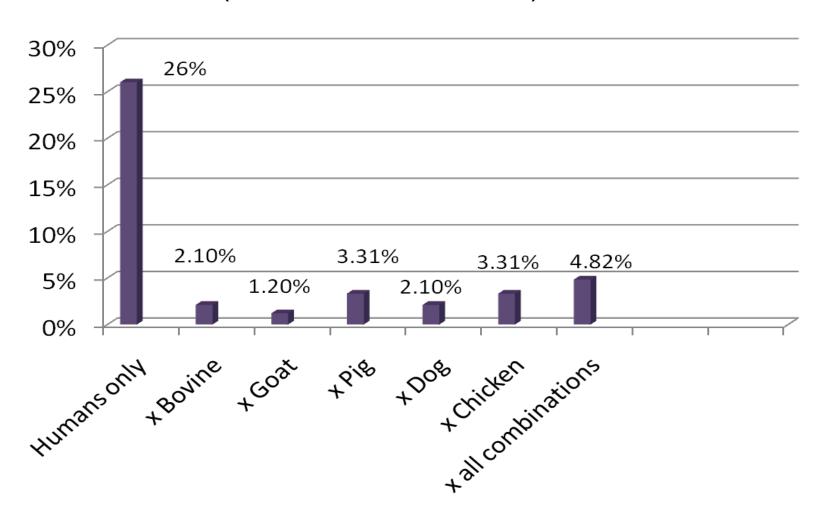
· Giardia lamblia

Table 1. Prevalence of Zoonotic
Protozoa Among Animal
Handlers by Gender

4		Male (N=410)	Female (N=268)			
Zoonotic Protozoa	Prev	Lower (95% CI)	Upper (95% CI)	Prev	Lower (95% CI)	Upper (95% CI)
Blastocystis hominis¹	2,44%	1.18%	4.44%	1.87%	0.61%	4.30%
Cryptosporidium parvum²	20.98%	17.13%	25.24%	21.64%	16.86%	27.06%
Entamoeba histolytica²	0.49%	0.06%	1.75%	1.12%	0.23%	3.24%
Giardia lamblia ^l	1.22%	0.40%	2.82%	0.00%	0.00%	1.37%
Plasmodium falcifarum²*	0.24%	0.01%	1.35%	1.87%	0.61%	4.30%
Entamoeba coli ¹ **	0.00%	0.00%	0.90%	0.37%	0.01%	2.06%


^{*} not zoonotic, as differential diagnosis for Babesia spp. infection

^{**} nonpathogenic


¹ superscript –examined by microscopy

² superscript – examined by PCR

Distribution of *Cryptosporidium* spp. Infected Farms with Pure Cases of Humans and Livestock

Percentage of Farms with *Cryptosporidium spp.*-Infected Humans and Their Animal Combination (n=142 infected farms)

Other findings

• The study affirmed the presence of *Plasmodium* falciparum infection and not *Babesia spp*.

• T. evansi = cattle and buffaloes (+); animal handlers (-)

• 30% prevalence of *Toxoplasma gondii* among cats; _{50 50 70} animal handlers (-)

• 6.49% prevalence of *Sarcocystis spp*. infection among dogs; animal handlers (-)

RISK FACTORS IN ANIMAL HANDLERS

Risk Factors with NO significant association with the transmission of the different zoonotic protozoa

- A. Educational Attainment
- **B.** Hand Washing Practices
- C. Farm Activities (pen cleaning, animal bathing, etc)
- D. Ingestion of Raw or Uncooked Meat
- E. Manner of Excreta Disposal
- F. Manner of Garbage Disposal
- G. Sanitary Quality and Use of Toilet

Risk Factors with significant association with the transmission of the different zoonotic protozoa

Characteristics of Drinking
 Water

Herd Size

Source

Prevalence of zoonotic protozoa infection among animal handlers by source of drinking water.

Source of Drinking Water	No. of Infected Animal Handlers	No. of Uninfected Animal Handlers	TOTAL	Prevalence
Public system	3	27	30	10%
Shallow Well	1	3	4	25%
Artesian Well	103	351	454	22.69
Spring, River, Creek	53	148	201	26.37%
TOTAL	157	521	678	23.15%

PREVALENCE OF ZOONOTIC PROTOZOA AMONG LIVESTOCK

General prevalence of zoonotic protozoa infection among livestock

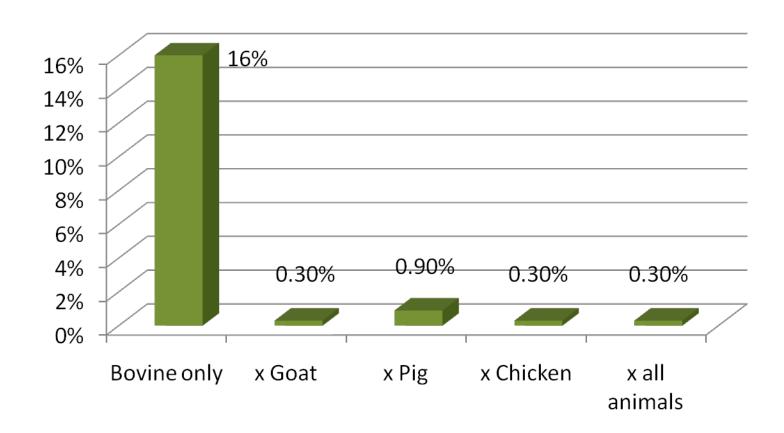
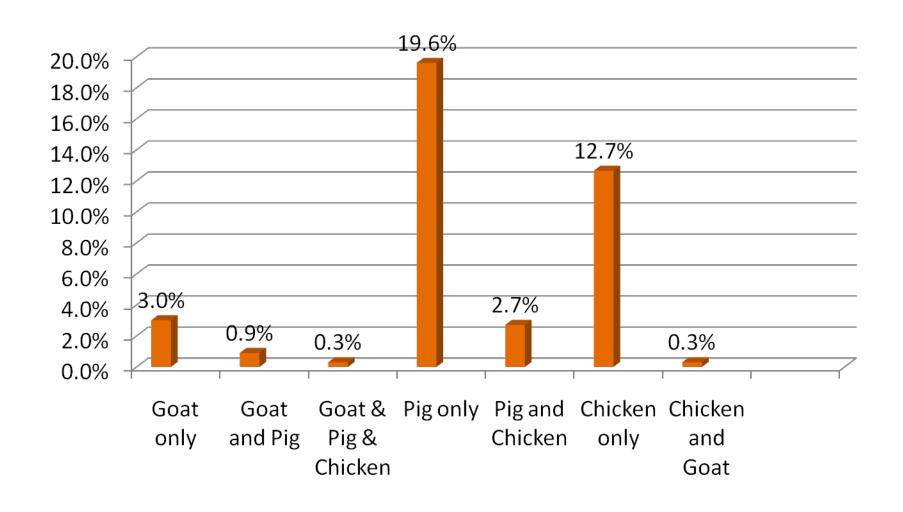

ANIMAL	INFECTED	NOT INFECTED	TOTAL	PREVALENCE %
Cattle	68	144	212	32.1
Buffalo	57	174	231	24.7
Goat	34	134	168	20.2
Pig	115	268	383	30.0
Dog	25	129	154	16.2
Chicken	130	206	336	38.7
Cat	15	38	53	28.3

Table 2. Prevalence of zoonotic protozoa by species among farm animals


Zoon otic	Cattle	Buffalo	Goat	Pig	Chicken	Pet Dogs	Pet Cats
Protozoa	Preva- lence %	Preva- Lance %	Prena- lence %	Preve- Lence %	Preva- lence %	Preva- Lence %	Preva- lence %
Blastocystis hominis 1	13.7	1.3	4. 2	28.7	22.3	1.3.0	n.a.
<i>Cryptospolidium</i> spp.1 <i>Trypa no som a</i>	26.9	21.2	17.9	29.8	21.1	9.7	n.a.
e vansi 2	3.3	3.9	ф	ф	n.a.	ф	n.a.
Sarcocystis spp.1	ф	ф	ф	ф	n.a.	6.5	n.a.
Toxoplasma gondii 1	ф	Φ	ф	ф	n.a.	ф	30.2

^{1 -} microscopy, 2 - PCR, φ - did not examine, n.a. - not applicable

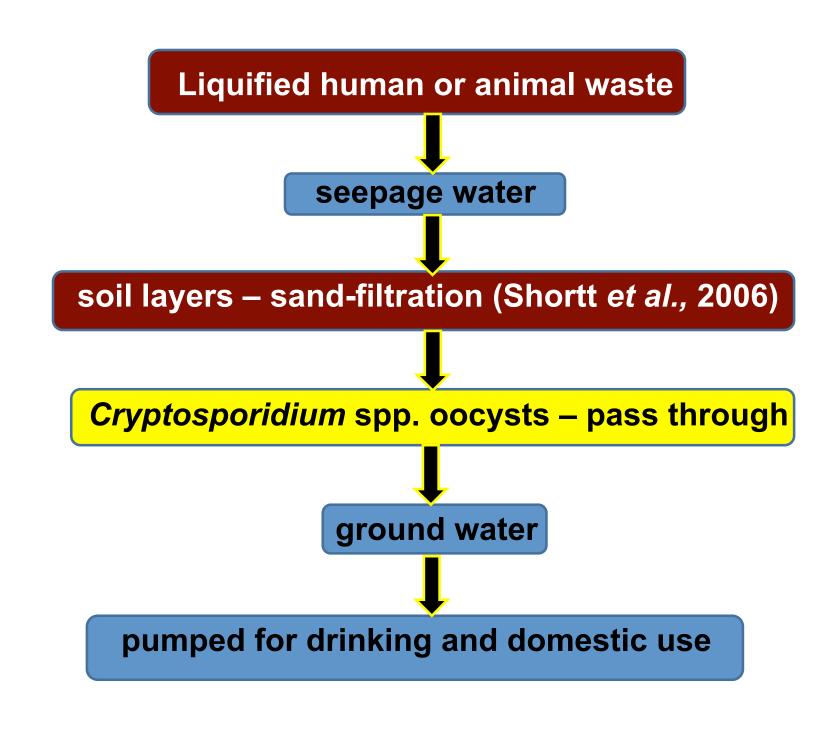
Percentage of Farms with *Cryptosporidium spp.*-Infected Bovine and Other Animal Combinations (n=332 infected farms)

Percentage of Farms with *Cryptosporidium spp.*- Infected Goat, Pig, Chicken and Their Combinations (n= 332 infected farms)

Other findings

- The pig had the highest prevalence for both Blastocystis hominis and Cryptosporidium spp
- The dog had the lowest prevalence for both protozoa.
- Both cattle and buffaloes were infected with Trypanosoma evansi
- Buffaloes having a higher prevalence *T. evansi* than cattle.
- PCR detected the pathogenic from the nonpathogenic hemoflagellates (T. theileri)

- Babesia species were not present in 100 rats, cattle and buffaloes
- Sarcocystis spp. oocysts in fecal samples of dogs 10/154 (6.49%) but blood DNA samples of dog owners were negative by PCR
- Sarcocystis spp. oocysts in cats- 4/107 (3.74%)
- Toxoplasma gondii oocysts in cats- 37/107
 (30%) but blood DNA samples of cat owners
 were negative by PCR


RISK FACTORS IN LIVESTOCK

Among Animal Handlers

	Risk Variable	Odds Ratio	P Value
	Characteristic of water source ¹		
- 一 -	a) Good source* but with excreta in the vicinity	1.50	0.052
	*public system or protected artesian well		
	b) Poor source** and with excreta in the vicinity	2.0	0.014
4	**shallow well or direct from creeks, rivers, springs		

¹presence of excreta in the vicinity of drinking water

Among Animal Handlers

Risk Variable	Odds Ratio	P Value
Herd Size		
 Moderate to maximum number¹ of animals in the herd 	2.0	0.010

cattle and swamp buffaloes 3 or 4 dams & 2 calves or heifers; goats > 5 to 20 does & 10 to 20 growers; pigs > 3 to 5 sows & > 10 to 20 growers; dogs > 3; chickens > 50 to 100

¹more than minimum standard for a small holding farm

90% of small holding farms not prepared for semi-commercial operation

sewage treatment neglected

speed of fecal decomposition cannot cope with the rate of new deposition of manure

serious excreta and garbage disposal problem

increase density of flies (mechanical transmitters)

high chances of ground contamination

Among live/tock

	Risk Variable	Odds Ratio	P value
The second second	Diarrhea for the past year and manner of medication*		
	- Cattle	6.43	0.001
Section 1	- Goat	2.0	0.049

^{*} proper medication (farmer consulted a credible animal health provider; farmer used either single or combination of antibacterials, anti-protozoals, adsorbents; followed strictly dosage and duration of administration)

^{*} improper medication (farmer did not consult any one; self-prescribed; consulted an animal health provider but failed to follow dosage and duration of the medication)

Tethered or fenced animals

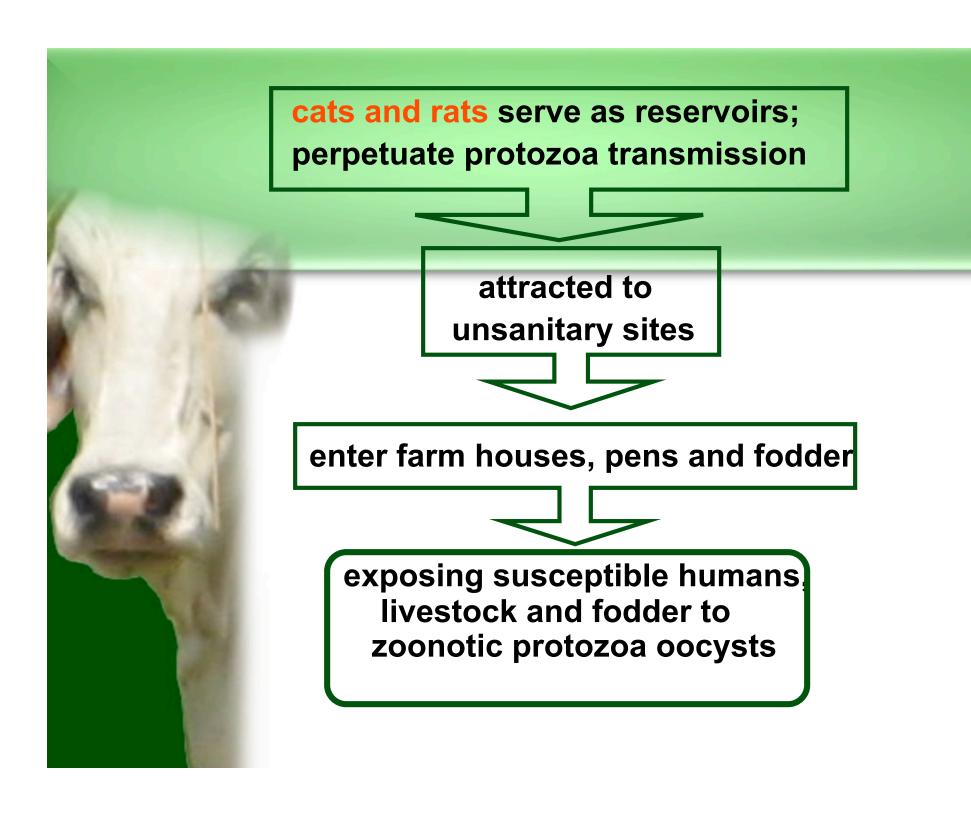
area seeded with infectious trophozoites or cysts from diarrheic waste

farmer adequately/inadequately medicates sick animals w/c takes a long duration

contaminated

environment

Animals re-infected

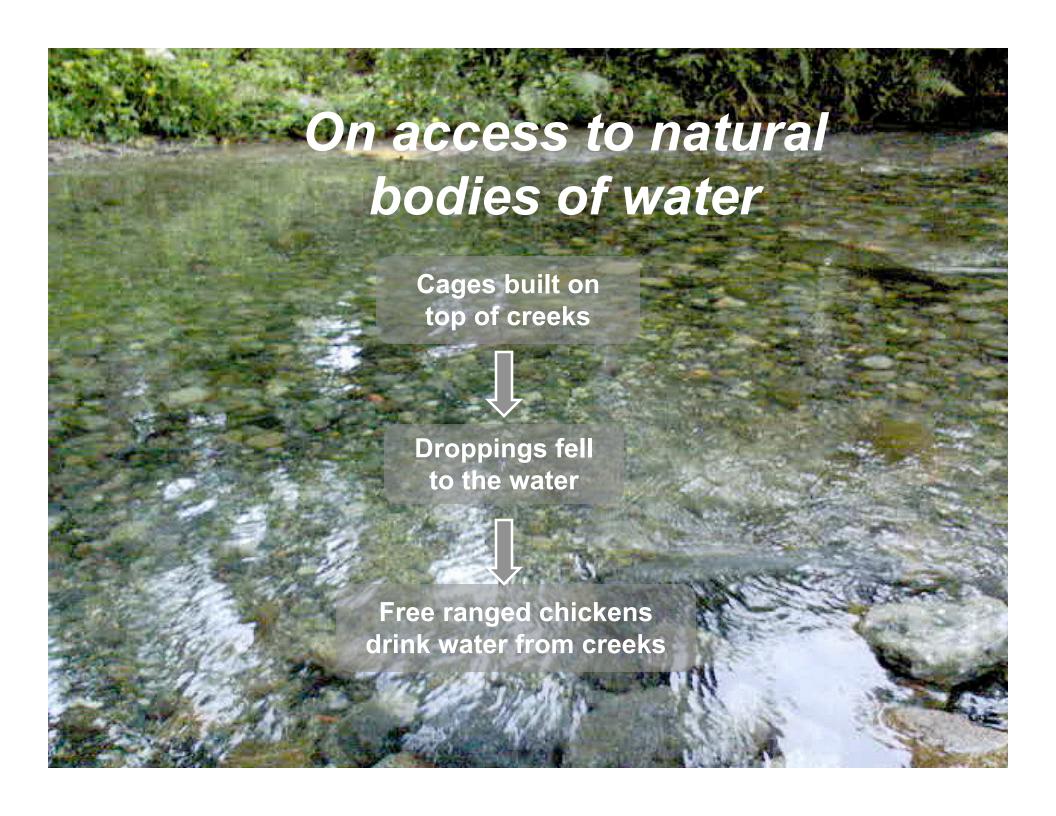

Animals indiscriminately ingest

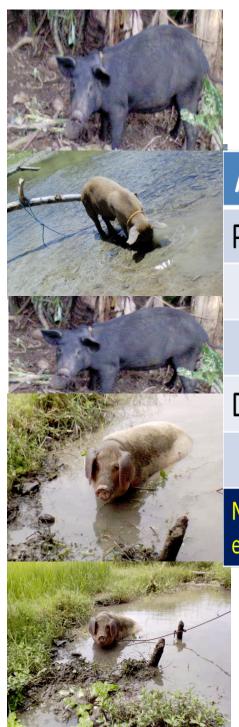
objects in the

Among live/tock

Risk Variable	Odds Ratio	P value
Presence of animal scavengers*		
- Buffalo	2.70	0.005
- Chickens	2.90	0.001

^{*}one or more stray cats reported within the vicinity of the animals or animal fodder or both; one or more rodents reported within the vicinity of the animals or animal fodder or both; both cats and rodents reported within the vicinity of the animals or animal fodder or both

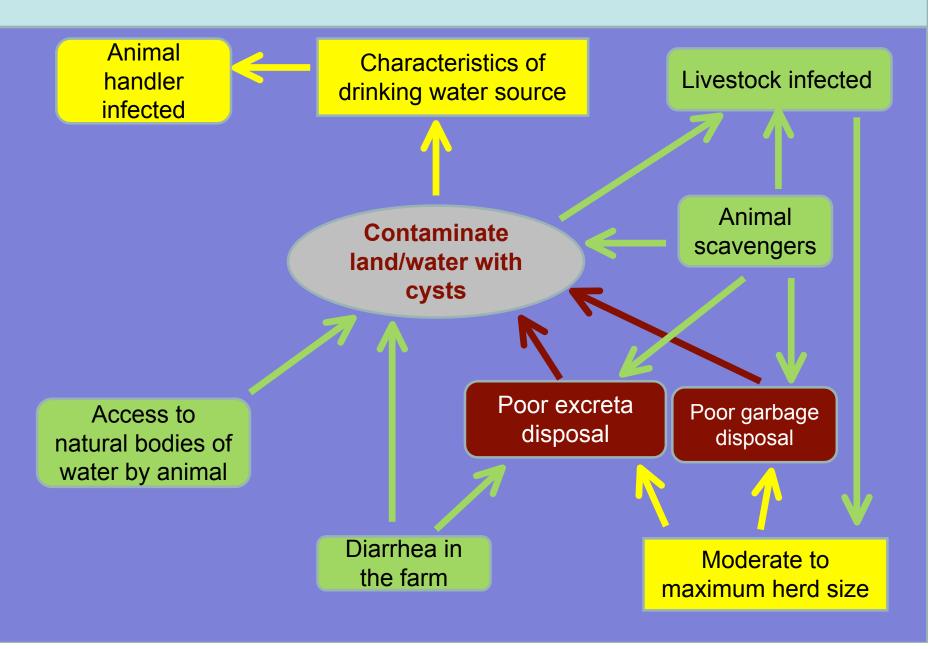




Among live/tock

Dick Variable	Odds Ratio	P value
Access to natural bodies of water*		
- Chickens	3.35	0.01

*allowing farm animals access to creeks, rivers, springs, irrigation canals for the past year in order to do any of the following: bath, drink, wallow, defecate



No Risk Factors Associated

Animal Type	Remarks
Pig	Majority not enclosed in pens
	Common, tied to a log
	Ranged freely
Dog	 Not restrained within the yard or cage
	Ranged freely

No risk factors associated with infection among pigs and dogs because they were exposed to all kinds of contaminated objects

SAPROZOONOTIC TRANSMISSION

The study revealed that among the zoonotic protozoa affecting the small holder livestock farmers in Aurora province,

Cryptosporidium parvum had the highest prevalence (20.98% in males and 21.64% in females).

All animal species such as cattle, buffalo, goat, pig, dog, and chicken were infected with

Cryptosporidium spp. and Blastocystis

hominis.

Risk factors significantly associated with the transmission of zoonotic protozoa among animal handlers included characteristics of drinking water source and herd size.

Risk factors associated with the transmission among animals

- Diarrhea and medication
 - cattle and goats
- Presence of animal scavengers
 - buffaloes and chickens
- Access to natural bodies of water
 - chickens

The study recommends the following:

- 1. promote safe potable drinking water by separating drinking water sources from sewage-contaminated water bodies and protecting water sheds from animal waste contamination through fencing;
- 2. identification and surveillance of suspected contaminated drinking water sources and natural bodies of water for waterborne zoonotic protozoa cysts;

- 3. involvement of the local health workers in educating the farmers on the harmful consequence of casual use of unsafe water;
- 4. prioritize inclusion of farmers with large herd sizes in government campaign against zoonotic protozoa infection; and
- 5. health education on the danger of allowing dogs and cats access to fodder stores of farm animals and defecating in pens of livestock;

- 1. promote hygienic collection of milk from cows, caracows and caprine does by maintaining the animal's udders clean and free from soil or dirt contamination by the milker's hands; and,
- 2. health education on the protective aspect of drinking pasteurized milk and the danger of drinking raw cow, buffalo or goat milk which could be contaminated by zoonotic enteric oocysts due to poor udder hygiene.

