Recent Developments in Irrigation Practices for Sugarcane Industry

Armando N. Espino, Jr.
CLSU Land and Water Resources Management Center

April 19, 2017
Drilon Hall, SEARCA, UPLB
Campus, Los Baños, Laguna
State of the Philippine Sugar Industry

- 423,000 has
 - 80% of farms are 5 has and less

- Php 87 Billion annual contribution to economy
 - 65,000 farmers, 700,000 workers, 5 M dependents

- 59 TC/ha (39 to 76 TC/ha)
 - *Thailand has avg production of 70 TC/ha

- Current cost of production
 - P70-100 k/ha
Challenges

• The need to produce more sugar, efficiently, productively at lower cost
• Changing climatic conditions and weather patterns (water is a major limiting factor for productivity)
• The industry expansion depends upon efficient water use in production
Vision for the Sugarcane Industry 2024

- Highly-Efficient Mills
- 20 Bioethanol Distilleries supplying 20% bioethanol mandate
- Sugar Mills Generating 500 MW power
- Specialty Sugar, Bio Water, Bio Plastics, etc.

Productive / Viable farms at 75 TC/ha & 2.1 LKg/TC
Sugar Industry Development Act of 2015

Primary goal of SIDA of 2015 is to:
- Promote the competitiveness of the sugarcane industry
- Maximize the utilization of sugarcane resources
- **Improve income of farmers through improved productivity**
- Product diversification
- Job generation
- Increased efficiency of sugar mills
Boosting the Sugarcane Industry Through Smart Farming Techniques

Project 1. Smart Water Management Strategies for Sugarcane

Implementing Agency: Central Luzon State University
General Objective:
Increase yield in sugarcane production by 30% through the use of smart-irrigation technologies.

Specific Objectives:
• Provide information on current irrigation status and practices in the sugar industry;
• Develop optimum irrigation scheduling schemes for sugarcane using soil moisture and weather monitoring systems;
• Increase water productivity in sugarcane production under drip and furrow irrigation method
Baseline Studies on Sugarcane Irrigation Practices

A survey questionnaire was prepared for the conduct of a field survey to determine current irrigation practices in the sugarcane industry.

From 120 respondents from Pampanga, Tarlac, Batangas and Negros Occidental:

Yield Comparison: Comparison between irrigated and non-irrigated sugarcane reveals that there is a 45% to 60% (65 TC/ha to 100TC/ha) increase in yield when sugarcane is irrigated.
Baseline Studies on Sugarcane Irrigation Practices

Negros Occidental
83 respondents
Average area 65 has

<table>
<thead>
<tr>
<th>No. Of Users</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No irrigation</td>
<td>35</td>
</tr>
<tr>
<td>Flooding</td>
<td>9</td>
</tr>
<tr>
<td>Furrow</td>
<td>29</td>
</tr>
<tr>
<td>Drip</td>
<td>5</td>
</tr>
<tr>
<td>Sprinkler</td>
<td>10</td>
</tr>
</tbody>
</table>

Yield Comparison

No irrigation 62.5 TC/ha
With irrigation 80.6 TC/ha

An average of 29% yield increase

Irrigation Cost/ha Php 9,811
Production cost Php 77,392

Irrigation Cost as % of Production Cost 12.7%
Flooding
La Granja, Negros Occidental

Water is supplied through quick coupling aluminum pipes or PE pipes, water distribution is through gravity, high labor requirement.
Baseline Studies on Sugarcane Irrigation Practices

Hda. Cabug, Brgy. Cabug, Bacolod City
N 10°35′18.4″
E 122°56′45.0″
Baseline Studies on Sugarcane Irrigation Practices

ERS Farms, Brgy. Vista Alegre, Bacolod City
N 10°38’21.5”
E 123°00’41.9”
Elevation: 86 m
Baseline Studies on Sugarcane Irrigation Practices

Had. Sta. Maria Gonzaga, Brgy. Zone 15, Talisay City
N 10°42'22.3"
E 122°59'10.8"
Elevation: 31 m
Baseline Studies on Sugarcane Irrigation Practices

Hda. Igpanulong, Brgy Robles, La Castellana, Negros Occidental

Hda. Grande, Brgy Robles, La Castellana, Negros Occidental
Baseline Studies on Sugarcane Irrigation Practices

Irrigation Water Sources

Hda. Igpanulong, Brgy Robles, La Castellana, Negros Occidental

Hda. Tamon, Brgy Lalagsan, La Castellana, Negros Occidental
Hand-held Hose Irrigation

La Carlota City, Negros Occidental
More efficient than flooding but labor-intensive
Baseline Studies on Sugarcane Irrigation Practices

Farmer’s Innovation

Hda. Najalinan, Brgy Robles, La Castellana, Negros Occidental

Had. Ma. Luisa, Brgy. E. Lopez, Silay City
`Location: 10°48'32.64"N,123°1'38.86"E
Furrow irrigation is the most widely used irrigation system for sugarcane in Batangas, Tarlac and Pampanga. It has low equipment costs and is simple to operate.

Mr. Manolito Enriquez
Brgy. Cugunan, Nasugbu, Batangas
2 hectares
5 days of irrigation per ha
75 TC/ha irrigated
52 TC/ha non-irrigated
Furrow Irrigation

Mr. Felix Vidal
Brgy. Balibago, Lian, Batangas
4 hectares
5 days of irrigation per ha
100 TC/ha irrigated
75 TC/ha non-irrigated
Hand-move Sprinkler

Hda Makina, Silay City, Negros Occidental
150 hectares
100 TC/ha - irrigated,
50 TC/ha – rainfed
Fuel consumption – 30 liters/ha
Capacity - 3 hrs/ha

Maximum application rate should take account of the intake capacity of the soil and the potential for soil erosion.
One disadvantage of a hand-move sprinkler system is the high labor requirement.
Hand-move Sprinkler

Brgy Guadalupe, San Carlos City, Negros Occidental
74 hectares
100 TC/ha - irrigated,
40 TC/ha – rainfed
Fuel consumption – 12.5 liters/hr
Capacity - 3 has/day, 5 hrs/ha
Hand-move Sprinkler Irrigation

Hacienda Logo, Vallehermoso, San Carlos City, Negros Occidental
12 hectares out of 52 hectares
80 TC/ha - irrigated,
50 TC/ha – rainfed
Fuel consumption – 90 liters/day
Travelling Boom Sprinkler

ECJ Farms
Hacienda Fe, La Carlota City
Capacity 3.5 ha/day,
Consumption 7 liters/hr
Boom width 40 m width
Speed – 60 m/hr
Eqpt Cost Php750,000/unit
Subsurface Drip Irrigation

Calatrava Sugar Alliance, Villa Rosa, Brgy San Isidro, Calatrava, San Carlos City, Negros Occidental
128 hectares irrigated
100 TC/ha - irrigated,
55 TC/ha – rainfed
Netafim – Php130,000/ha, 7 years

Advantages of drip irrigation over sprinkler
1. Manpower reqt (4 vs 8)
2. Fertigation (high fertilizer use efficiency)
3. Low energy requirement
Surface Drip Irrigation

Hawaiian Philippine Company, Silay City, Negros Occidental
Sub surface Drip Irrigation

- Netafim Demo Farm
- Agriculto Corp, Paniqui, Tarlac
- 3.6 has, 3 blocks
- Php130,000/ha
- One (1) ha/day
- 23 hrs operation
- Head control unit, 63 mm PE main pipes,
- 16 mm diameter dripline, with a lateral spacing of 1.5 m, emitter spacing of 0.5 m and emitter flow rate 1.0 lph.
- Each crop row is irrigated with one dripline installed at 0.3 m below the soil. Date of installation Dec 2014
Field Experiment on irrigation scheduling schemes for sugarcane
Optimization of irrigation scheduling schemes for sugarcane

MAIN PLOT
D – Subsurface drip irrigation
F – Furrow irrigation
Control – No supplemental irrigation

SUB PLOT
W1 – 30% MAD = 21.12% VMC
W2 – 50% MAD = 17.63% VMC
W3 – 70% MAD = 14.14% VMC

Experimental Layout
Optimization of irrigation scheduling schemes for sugarcane
Optimization of irrigation scheduling schemes for sugarcane

Installation of irrigation System

Installation of drip laterals (16 mm, 30 cm spacing, 2 lph TopDrip)

Individual valves for each plot

December 12, 2014
Optimization of irrigation scheduling schemes for sugarcane

Testing of SDI

Installation of 63 mm HDPE mainline for furrow irrigation
Optimization of irrigation scheduling schemes for sugarcane

2-Hp Jet pump for SDI system

7-Hp Diesel engine powered centrifugal pump for furrow irrigation
Optimization of irrigation scheduling schemes for sugarcane

Pumphouse with concrete reservoirs

Separate mainlines for drip and furrow irrigation system
Optimization of irrigation scheduling schemes for sugarcane

Calibration of Decagon EC-5 soil moisture sensors

\[y = 1.2819x - 2.2125 \]

\[R^2 = 0.8015 \]
Installation of EC-5 soil moisture sensors and data loggers
Optimization of irrigation scheduling schemes for sugarcane

The experimental area was manually planted to sugarcane on December 18, 2014 at a rate of 30,000 (3 lacsas) seed pieces per hectare. The sugarcane variety used for the experiment was PHIL 2000-2569.
Optimization of irrigation scheduling schemes for sugarcane

Soil analysis

<table>
<thead>
<tr>
<th>Sample</th>
<th>Texture</th>
<th>pH</th>
<th>OM%</th>
<th>P (ppm)</th>
<th>K (ppm)</th>
<th>Ca (ppm)</th>
<th>Mg (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>Loamy sand</td>
<td>6.25</td>
<td>0.8</td>
<td>59</td>
<td>106</td>
<td>652</td>
<td>69</td>
</tr>
<tr>
<td>299</td>
<td>Loamy sand</td>
<td>6.10</td>
<td>0.3</td>
<td>62</td>
<td>131</td>
<td>682</td>
<td>81</td>
</tr>
<tr>
<td>300</td>
<td>Loamy Sand</td>
<td>6.28</td>
<td>0.5</td>
<td>100</td>
<td>95</td>
<td>695</td>
<td>70</td>
</tr>
<tr>
<td>301</td>
<td>Loamy sand</td>
<td>6.14</td>
<td>0.6</td>
<td>74</td>
<td>121</td>
<td>663</td>
<td>65</td>
</tr>
</tbody>
</table>

Field Capacity – 26.36% Permanent Wilting Point – 7% Bulk density – 1.24
Optimization of irrigation scheduling schemes for sugarcane

Preparation of fertilizer material

Fertilizer Rates

Basal Application:
Urea (46-0-0) = 4.25 bags/ha or 1,988.96gms/plot
Potash (0-0-60) = 2.375 bags/ha or 1,111.48gms/plot

2nd Dosage:
Urea (46-0-0) = 4 bags/ha or 1,871.96 gms/plot
Potash (0-0-60) = 2.25 bags/ha or 1,052.98 gms/plot

Application of basal fertilizer
Optimization of irrigation scheduling schemes for sugarcane

HOBO Automatic Weather Station installed at LAREC (Jan 9, 2015)
Optimization of irrigation scheduling schemes for sugarcane

Monitoring Soil moisture content
Drip Irrigated Plots
February 13, 2015
Optimization of irrigation scheduling schemes for sugarcane

March 27, 2015

Subsurface drip irrigation

No Irrigation
Optimization of irrigation scheduling schemes for sugarcane

June 4, 2015 (168 DAP)

Subsurface drip irrigation

No Irrigation

153.37 cm

28.65 cm
Optimization of irrigation scheduling schemes for sugarcane

July 8, 2015 (202 DAP or 7 MAP)

- Subsurface drip irrigation: 206.59 cm
- No Irrigation: 67.94 cm
Optimization of irrigation scheduling schemes for sugarcane

Sept 18, 2015 (273 DAP)

271.26 cm

176.07 cm
Optimization of irrigation scheduling schemes for sugarcane
Optimization of irrigation scheduling schemes for sugarcane
Germination Data

<table>
<thead>
<tr>
<th>Treatments</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>Avg</th>
<th>Treatment Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW1</td>
<td>98.26</td>
<td>98.96</td>
<td>99.31</td>
<td>98.84</td>
<td>99.00</td>
</tr>
<tr>
<td>FW2</td>
<td>98.96</td>
<td>99.31</td>
<td>98.96</td>
<td>99.08</td>
<td></td>
</tr>
<tr>
<td>FW3</td>
<td>98.61</td>
<td>99.31</td>
<td>99.31</td>
<td>99.08</td>
<td></td>
</tr>
<tr>
<td>DW1</td>
<td>99.31</td>
<td>98.61</td>
<td>98.61</td>
<td>98.84</td>
<td>99.04</td>
</tr>
<tr>
<td>DW2</td>
<td>98.96</td>
<td>98.96</td>
<td>99.31</td>
<td>99.08</td>
<td></td>
</tr>
<tr>
<td>DW3</td>
<td>98.96</td>
<td>99.65</td>
<td>98.96</td>
<td>99.19</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>97.92</td>
<td>94.79</td>
<td>92.71</td>
<td>95.14</td>
<td>95.14</td>
</tr>
</tbody>
</table>
Optimization of irrigation scheduling schemes for sugarcane

Crop Height, m December 2015

<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW1</td>
<td>4.13</td>
<td>4.02</td>
<td>3.75</td>
<td>3.97</td>
</tr>
<tr>
<td>FW2</td>
<td>3.75</td>
<td>4.10</td>
<td>3.80</td>
<td>3.88</td>
</tr>
<tr>
<td>FW3</td>
<td>3.82</td>
<td>3.73</td>
<td>4.22</td>
<td>3.92</td>
</tr>
<tr>
<td>DW2</td>
<td>3.80</td>
<td>3.49</td>
<td>3.46</td>
<td>3.58</td>
</tr>
<tr>
<td>DW1</td>
<td>3.43</td>
<td>3.37</td>
<td>3.71</td>
<td>3.50</td>
</tr>
<tr>
<td>DW3</td>
<td>3.39</td>
<td>3.28</td>
<td>3.24</td>
<td>3.30</td>
</tr>
<tr>
<td>Control</td>
<td>2.26</td>
<td>2.12</td>
<td>2.37</td>
<td>2.25</td>
</tr>
</tbody>
</table>
Optimization of irrigation scheduling schemes for sugarcane

Crop Height, December 2015 (m)

Comparison Among Means

<table>
<thead>
<tr>
<th>NAME ID</th>
<th>MEAN</th>
<th>RANKED AT PROBABILITY LEVEL 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW1</td>
<td>3.9667</td>
<td>A</td>
</tr>
<tr>
<td>FW3</td>
<td>3.9233</td>
<td>AB</td>
</tr>
<tr>
<td>FW2</td>
<td>3.8833</td>
<td>AB</td>
</tr>
<tr>
<td>DW2</td>
<td>3.5833</td>
<td>BC</td>
</tr>
<tr>
<td>DW1</td>
<td>3.5033</td>
<td>C</td>
</tr>
<tr>
<td>DW3</td>
<td>3.3033</td>
<td>C</td>
</tr>
<tr>
<td>Control</td>
<td>2.25</td>
<td>D</td>
</tr>
</tbody>
</table>
Optimization of irrigation scheduling schemes for sugarcane

Millable stalk length, December 2015 (m)

<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW1</td>
<td>3.49</td>
<td>3.31</td>
<td>3.11</td>
<td>3.30</td>
</tr>
<tr>
<td>FW3</td>
<td>3.28</td>
<td>3.1</td>
<td>3.47</td>
<td>3.28</td>
</tr>
<tr>
<td>FW2</td>
<td>3.12</td>
<td>3.45</td>
<td>3.14</td>
<td>3.24</td>
</tr>
<tr>
<td>DW2</td>
<td>3.22</td>
<td>2.82</td>
<td>2.77</td>
<td>2.94</td>
</tr>
<tr>
<td>DW1</td>
<td>2.65</td>
<td>2.66</td>
<td>3.15</td>
<td>2.82</td>
</tr>
<tr>
<td>DW3</td>
<td>2.65</td>
<td>2.68</td>
<td>2.6</td>
<td>2.64</td>
</tr>
<tr>
<td>Control</td>
<td>1.7</td>
<td>1.55</td>
<td>1.73</td>
<td>1.66</td>
</tr>
</tbody>
</table>
Optimization of irrigation scheduling schemes for sugarcane

Millable stalk length, December 2015 (m)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FW1</td>
<td>3.3033</td>
<td>A</td>
</tr>
<tr>
<td>FW3</td>
<td>3.2833</td>
<td>A</td>
</tr>
<tr>
<td>FW2</td>
<td>3.2367</td>
<td>A</td>
</tr>
<tr>
<td>DW2</td>
<td>2.9367</td>
<td>AB</td>
</tr>
<tr>
<td>DW1</td>
<td>2.8200</td>
<td>B</td>
</tr>
<tr>
<td>DW3</td>
<td>2.6433</td>
<td>B</td>
</tr>
<tr>
<td>Control</td>
<td>1.6600</td>
<td>C</td>
</tr>
</tbody>
</table>
Optimization of irrigation scheduling schemes for sugarcane

Total weight of four (4) inner rows at harvest (kgs)

<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW1</td>
<td>1143</td>
<td>1369</td>
<td>1108</td>
<td>1,206.67</td>
</tr>
<tr>
<td>FW2</td>
<td>1217</td>
<td>1314</td>
<td>1199</td>
<td>1,243.33</td>
</tr>
<tr>
<td>FW3</td>
<td>1255</td>
<td>1170</td>
<td>1124</td>
<td>1,183.00</td>
</tr>
<tr>
<td>DW1</td>
<td>994</td>
<td>1042</td>
<td>1121</td>
<td>1,052.33</td>
</tr>
<tr>
<td>DW2</td>
<td>1014</td>
<td>1161</td>
<td>1065</td>
<td>1,080.00</td>
</tr>
<tr>
<td>DW3</td>
<td>1040</td>
<td>893</td>
<td>790</td>
<td>907.67</td>
</tr>
<tr>
<td>Control</td>
<td>482</td>
<td>442</td>
<td>488</td>
<td>470.67</td>
</tr>
</tbody>
</table>
Optimization of irrigation scheduling schemes for sugarcane

Weight per plot in kgs, December 2015

Comparison among means

<table>
<thead>
<tr>
<th>NAME ID</th>
<th>MEAN</th>
<th>RANKED AT PROBABILITY LEVEL 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW2</td>
<td>1243.3333</td>
<td>A</td>
</tr>
<tr>
<td>FW1</td>
<td>1206.6667</td>
<td>AB</td>
</tr>
<tr>
<td>FW3</td>
<td>1183.0000</td>
<td>AB</td>
</tr>
<tr>
<td>DW2</td>
<td>1080.0000</td>
<td>AB</td>
</tr>
<tr>
<td>DW1</td>
<td>1052.3333</td>
<td>BC</td>
</tr>
<tr>
<td>DW3</td>
<td>907.6667</td>
<td>C</td>
</tr>
<tr>
<td>Control</td>
<td>470.6667</td>
<td>D</td>
</tr>
</tbody>
</table>
Optimization of irrigation scheduling schemes for sugarcane

Yield in Tc/ha and Estimated Bags of sugar per hectare

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Replication</th>
<th>Avg kg/plot</th>
<th>Tc/ha</th>
<th>Lkg/Tc</th>
<th>Estimated Bags of Sugar/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW1</td>
<td>R1</td>
<td>1,206.67</td>
<td>193.38</td>
<td>1.64</td>
<td>316.49</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>1,243.33</td>
<td>199.25</td>
<td>1.87</td>
<td>372.60</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>1,183.00</td>
<td>189.58</td>
<td>1.72</td>
<td>325.45</td>
</tr>
<tr>
<td>Avg Furrow</td>
<td></td>
<td>1,211.00</td>
<td>194.07</td>
<td>1.74</td>
<td>338.18</td>
</tr>
<tr>
<td>DW1</td>
<td>R1</td>
<td>1,052.33</td>
<td>168.64</td>
<td>1.71</td>
<td>288.94</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>1,080.00</td>
<td>173.08</td>
<td>1.88</td>
<td>325.96</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>907.67</td>
<td>145.46</td>
<td>1.88</td>
<td>272.98</td>
</tr>
<tr>
<td>Avg Drip</td>
<td></td>
<td>1,013.33</td>
<td>162.39</td>
<td>1.82</td>
<td>295.96</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>470.67</td>
<td>75.43</td>
<td>1.73</td>
<td>130.24</td>
</tr>
</tbody>
</table>

Optimization of irrigation scheduling schemes for sugarcane
Irrigation Amounts

<table>
<thead>
<tr>
<th>Irrigation Treatment</th>
<th>Volume of water delivered m3/ha</th>
<th>Average Volume m3/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>3,033.50</td>
<td>2,595.02</td>
</tr>
<tr>
<td>D2</td>
<td>2,608.42</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>2,143.16</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>7,600.26</td>
<td>6,790.23</td>
</tr>
<tr>
<td>F2</td>
<td>7,112.15</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>5,658.29</td>
<td></td>
</tr>
</tbody>
</table>
Water Savings (%)

The water saving in drip over furrow irrigation system was calculated as under:

$$Ws \, (%) = \frac{(Wa - Wb)}{Wa} \times 100$$

Where,

- $WS = \text{Water saving (in %)}$
- $Wa = \text{Total water used in furrow irrigation system (m}^3/\text{ha})$
- $Wb = \text{Total water used in drip irrigation system (m}^3/\text{ha})$

$Wa = 6,790.23 \text{ m}^3/\text{ha}$
$Wb = 2,595.02 \text{ m}^3/\text{ha}$

$WS = 61.78\%$
Optimization of irrigation scheduling schemes for sugarcane

Water Productivity

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Water consumed (liters/ha)</th>
<th>Yield (kgs/ha)</th>
<th>Water productivity (liters/kg)</th>
<th>Avg Water Productivity (liters/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW1</td>
<td>3,033,500</td>
<td>168,640</td>
<td>17.99</td>
<td>15.93</td>
</tr>
<tr>
<td>DW2</td>
<td>2,608,420</td>
<td>173,080</td>
<td>15.07</td>
<td></td>
</tr>
<tr>
<td>DW3</td>
<td>2,143,160</td>
<td>145,460</td>
<td>14.73</td>
<td></td>
</tr>
<tr>
<td>FW1</td>
<td>7,600,260</td>
<td>193,380</td>
<td>39.30</td>
<td>34.95</td>
</tr>
<tr>
<td>FW2</td>
<td>7,112,150</td>
<td>199,250</td>
<td>35.69</td>
<td></td>
</tr>
<tr>
<td>FW3</td>
<td>5,658,290</td>
<td>189,580</td>
<td>29.85</td>
<td></td>
</tr>
</tbody>
</table>
Irrigation Practices in the Sugarcane Industry: Australian Experience
Australian Sugar Industry

• Australia’s sugar industry accounts for 2.7% of world sugar production but is the world’s 3rd largest exporter of sugar.
• There are about 4,000 cane farming businesses supplying 24 mills owned by 8 milling companies.
• Approximately 30% of sugarcane businesses are greater than 125 hectares and account for about 70% of total production.
• Sugar Research Australia (SRA) is the primary RD&E provider for the Australian sugarcane industry, working in partnership with over 30 public and private research organisations.
• The value of Australia’s sugar exports was $1.8 billion in 2015/16.
• The 2015 season yielded 4.8 million tonnes of sugar from 34.8 million tonnes of cane, across 381,000 hectares
Sugar Research Australia

The core responsibilities of SRA are to:

• Deliver cost-effective research and development services to the Australian sugar industry to enhance its viability, competitiveness and sustainability;
• Carry-out, coordinate and provide funding for R&D activities in relation to the Australian sugar industry;
• Facilitate the dissemination, extension, adoption and commercialisation of results of R&D activities; and
• Support and develop industry research capacity.
Sugarcane Producing Areas in Australia
Precision agriculture (PA) is a farm management technique that addresses the variability of the land and resulting variability in yield to improve farm productivity and profitability.

PA can also help address variability in weed, pest and disease occurrence and moisture supply.
Adoption of PA in the Australian Sugar Industry

As production costs increase, along with concern about the environmental impacts of agriculture, there is a need for increased efficiency on the farm and for growers to demonstrate that they are using the best available tools and practices. Also, growers need to continually develop their ability to increase profitability of farming enterprise and be competitive in the modern marketplace.
Implementing PA Precision Agriculture for the Sugarcane Industry

PA as defined is identifying and managing variability on the farm and in productivity. In cropping industries, this is also termed “Site-specific crop management (SSCM)”.

PA or SSCM can be considered as the application of information technologies, together with production experience, to:

- optimize production efficiency
- optimize crop quality
- minimize environmental impacts
- minimize risk to the grower
Cyclical process of Precision Agriculture

1. Observation
 - The primary source of information is a yield map (left) or sometimes, a remotely sensed image.

2. Evaluation and interpretation
 - Supplementary sources of information are invaluable. These may include: remotely sensed imagery, a digital elevation model, high resolution soil mapping (e.g., EMI (above)), gamma radiometry, GPR, soil and tissue testing and crop assessment.

3. Targeted management plan
 - e.g., targeted application of fertilizer, irrigation water, agrochemicals, soil ameliorants or crop ripeners, selective harvesting, etc.

The process of Precision Agriculture
Differential GPS receiver used for satellite navigation. The top image shows the GPS receiver and the antennae that receives the differential signal mounted on top of the tractor. The bottom image shows the tractor operator using the in-cab display for GPS guidance in the field.
Navigational Uses of GPS

• **Guidance**
 GPS guides machinery but the operator controls it. The guidance system uses a signalling device to prompt the driver to maintain a predetermined path. It needs sub-meter accuracy of GPS signal.

• **Auto steer**
 Removes operator from most steering operations. For safety, auto steer systems have an automatic override system as soon as the operator takes control of the steering wheel. These systems also monitor the quality of the satellite signal. It needs centimeter accuracy of GPS signal.

• **Controlled traffic**
 The use of guidance or auto steer to confine all machinery loads to permanent traffic lanes.

• **Accurate inter-row cultivation, spraying and planting.**
Dual-row, controlled-traffic farming system in which tire tracks are confined to relatively narrow traffic lanes between beds.
Economic Benefits of Controlled Traffic

• tractor power requirements reduced by at least 30 per cent
• faster access to field after rain
• greater infiltration of rainfall, resulting in less run-off
• better soil health, with more plant-available water
• less tillage after harvests
GIS and Variable Rate Applications

Farmers often know from experience where high- and low yielding areas on their farm are, or where they have particular problems.

The value of using GIS to record and analyse this information is that growers can keep records over time and compare multiple data sets (for example, soils, yield and elevation) at the same time to create management zones.

When this information is in digital form, variable-rate prescriptions can be created and directly transferred into a tractor display unit with GPS capability to streamline a site-specific management system.
Management Zones

Elevation data

Yield data

Soil maps
A series of images collected over time can show changes in plant growth, soils, erosion or other physical processes. Some agricultural uses of remote sensing include:

• estimating crop yields
• detecting diseases
• identifying pest and weed coverage
• evaluating uniformity of irrigation
• observing changes in plant growth over time
• assessing the impact of severe weather
• determining the location and extent of crop stress.

Since sugarcane is a crop that cannot be easily observed once it reaches a certain height, RS can be a useful management tool that doesn’t require physical access to the crop. Problems within a field may be identified remotely before they can be identified on the ground.
Uses of RS in Sugarcane

Remote sensing has been used for many different purposes in sugarcane growing and harvesting. Some potential uses of imagery may include:

• forecasting regional yield
• producing farm-level and block-level yield maps
• evaluating the effectiveness of irrigation
• screening research and breeding trials
• identifying and managing diseases
Furrow Irrigation for Sugarcane using lay flat hose
Automated Furrow Irrigation for Sugarcane
Automated Furrow Irrigation for Sugarcane

Accurate data is collected through probes and sensors, and accessed in real time through a software for real time monitoring and analysis. With ever increasing demand on Australia’s limited water resources and the desire to increase productivity, research has continued to develop Automation Control Systems to improve the operation and efficiency of irrigation systems. The automated irrigation system communicates wirelessly, and the control systems can be logged into remotely using either mobile telemetry or internet connections, so there is no need to be on site to make decisions.
WiSA Automated Irrigation System
Irrigation in operation
Sensor for runoff water
Runoff water are collected in ponds for reuse.
Use of extended tubes at the outlets to reduce erosion
Travelling gun sprinkler
Center-pivot system with adaptive control for variable rate irrigation
Solar powered pumping system for drip irrigation
Submersible Pump
Drip-irrigated Sugarcane
NCEA’s research thematic areas

(1) Irrigation and water management;
(2) Sustainable soils and landscapes;
(3) Precision agriculture;
(4) Energy conservation and management; and
(5) Automation, robotics and machine vision
NCEA research benefits to farming

- Automated irrigation systems able to apply water as efficiently as 90%.
- Assessment of controlled traffic farming fine tuning nitrogen management guidelines
- Commercialization of weed sensing technology which can distinguish weeds from crop and apply 80% less herbicide
- Assessment of alternative energy options for the industry
Irrigation automation research

- Automation enables high resolution data capture and analysis and control
 - Hydraulic optimisation
 - Real-time adaptive irrigation control
 - On-the-go plant and soil sensing technology
- Internet-enabled sensing and control integrated into the irrigation system
Surface irrigation hydraulic optimization

- Real-time optimisation of surface irrigation using ‘AutoFurrow’

- Real-time optimisation typically involves:
 1. Inflow measurement
 2. Time for advance front to about midway down the field
 3. Real-time estimation cut-off time that will give maximum performance for that irrigation
Real-time adaptive irrigation control

- Control methodology developed that can adapt to different irrigation systems and crops
Adaptive control of surface irrigation

• Accurate hydraulic models are available to determine irrigation application distributions
• Link hydraulic model to a crop production and soil model and control strategy:
 ➢ Crop model estimates crop response to different irrigation applications
 ➢ Control strategy determines irrigation applications
 ➢ Hydraulic model determines spatial distribution of irrigation
As researchers, we have to explore new and improved methodologies, examine, and be open to the adoption of new technologies that have the potential to improve farming operations for food security and increased profitability.
Thank You!!!