USE OF GENOMICS IN THE IMPROVEMENT OF CROPS

Zenaida V. Magbanua
DOST and University of the Philippines
Balik-Scientist Awardee
PROBLEMS FACING THE 21ST CENTURY

- New diseases/pathogens
- Old diseases
- Climate change/global warming
- Astronomic population growth
- Dwindling world resources
PROBLEMS FACING THE 21ST CENTURY

- New diseases/pathogens
- Old diseases
- Climate change/global warming
- Astronomic population growth
- Dwindling world resources
PROBLEMS FACING THE 21ST CENTURY

- New diseases/pathogens
- Old diseases
- Climate change/global warming
- Astronomic population growth
- Dwindling world resources

agriculture

- Increase yields
- Low/er chemical inputs
- Stress resistance
 - Abiotic (drought, heat, etc)
 - Biotic (disease, pest, etc)
- Sustainability
- Improved value-added
agriculture

genomics
Genomics: the study of the genome which is the sum total of all heritable sequences in an organism, DNA in most cases, and all its attributes.
Traits that are important in agriculture are dictated by genes annotated from DNA sequences.
Increase yields
Low/er chemical inputs
Abiotic stress resistance
Biotic stress resistance
Sustainability

agriculture

genomics

Gene sequence information
Current research in Agriculture

Improvement of crop production through
• traditional breeding
Current research in Agriculture

Improvement of crop production through

- traditional breeding ➔ SLOW
Current research in Agriculture

Improvement of crop production through

- traditional breeding
- marker-assisted selection
Current research in Agriculture

Improvement of crop production through

- traditional breeding ➡ SLOW
- marker-assisted selection ➡ BETTER BUT DOES NOT WORK ALL THE TIME
Current research in Agriculture

Improvement of crop production through

• traditional breeding
• marker-assisted selection
• transgenic technology
Current research in Agriculture

Improvement of crop production through

- traditional breeding ➔ SLOW
- marker-assisted selection ➔ BETTER BUT DOES NOT WORK ALL THE TIME
- transgenic technology ➔ LIMITED KNOWLEDGE ON GENE SEQUENCES
Current research in Agriculture

Improvement of crop production through

• traditional breeding
• marker-assisted selection
• transgenic technology
• RNAi technology
Current research in Agriculture

Improvement of crop production through

- traditional breeding ➔ SLOW
- marker-assisted selection ➔ BETTER BUT DOES NOT WORK ALL THE TIME
- transgenic technology ➔ LIMITED KNOWLEDGE ON GENE SEQUENCES
- RNAi technology ➔ LIMITED KNOWLEDGE ON GENE SEQUENCES
Current research in Agriculture

Improvement of crop production through

• traditional breeding
• marker-assisted selection
• transgenic technology
• RNAi technology
• optimization of chemical inputs and soil conditions
Current research in Agriculture

Improvement of crop production through

- traditional breeding ➔ SLOW
- marker-assisted selection ➔ BETTER BUT DOES NOT WORK ALL THE TIME
- transgenic technology ➔ LIMITED KNOWLEDGE ON GENE SEQUENCES
- RNAi technology ➔ LIMITED KNOWLEDGE ON GENE SEQUENCES
- optimization of chemical inputs and soil conditions (crops) ➔ RELIES HEAVILY ON FERTILIZERS, PESTICIDES, ETC
Traditional breeding
• Selects for desired trait/s by crossing and waiting for the progeny to grow and manifest phenotype
Traditional breeding for high yield and disease resistance

- Disease resistant, but low yielding
- Disease susceptible, but high yielding

Several generations, i.e., years of crosses
Marker-assisted selection

- Uses molecular markers to breed for desirable traits
- Markers may be SSRs, RFLPs, AFLPs, etc
- Usually applies to quantitative trait loci or quantitative traits (QTLs)
QTLs
• Traits whose expression are not determined by a single gene or locus
• Mapping and breeding these traits are a big challenge
• LOD - log of odds
 - log of the probability that the evidence can explain a phenomena/the probability that it is a random event
Examples of LOD

a) 1/1
 LOD = 0

b) 1/0.1
 LOD = 1

c) 1/0.01
 LOD = 2

A cut-off of LOD 3 is usually accepted as support for linkage in genetics.
Examples of quantitative traits

- maize resistance to *Aspergillus flavus*
Examples of quantitative traits

- maize resistance to *Aspergillus flavus*
- rice resistance to bacterial panicle blight
Transgenic technology

• aka genetic engineering technology
• transfer of a gene or a part thereof into the same or another organism

• but we need to know the gene sequence
RNA interference

- aka gene silencing
- a mechanism acquired by genomes to ward off virus infection and transposons
RNA interference

- aka gene silencing
- a mechanism acquired by genomes to ward off virus infection and transposons
- again, we need gene sequence
Optimization of chemical inputs and soil conditions

- focused on effects of inputs on yield and not on physiological properties of crops
- if crop physiology is optimum for nutrient absorption, minimum input would be needed
- knowledge of gene sequence for a specific physiological property would be extremely helpful
Optimization of chemical inputs and soil conditions
Current research in Genomics

- Genome sequences of different
 - animals including livestocks
 - plants including crops
 - plant and animal pests
 - plant and animal pathogens
- Transcriptomic sequences of different processes associated with above organisms
- Proteomic sequences of different processes associated with above organisms
- Metabolomic sequences associated with above
- Transcriptomics - study of the transcriptome which is the sum total of mRNA expression from a specific time point in the life cycle of an organism under a specific condition
- Proteomics - study of the proteome which is the sum total of protein expression from a specific time point in the life cycle of an organism under a specific condition
- Metabolomics - study of the metabolome which is the sum total of all metabolomes secreted from specific time point in the life cycle of an organism under a specific condition
Crops with completed or partially completed genomes

- Rice
- Cottonwood
- Grapes
- Sorghum
- Maize
- Soybean
- Apple
- Strawberry
- Cacao
- Date palm
- Potato
- Chinese cabbage
- Alfalfa
- Pigeonpea
- Cassava
- Foxtail millet
- Tomato
- Melon
- Banana
- Orange
- Cotton
- Bamboo
Crops with completed or partially completed genomes

- Earlier projects used BAC libraries and dideoxy sequencing
- Later ones used NGS and whole genome shotgun techniques
- High-throughput data analysis methods were used for annotation
- Data sequences and annotations were submitted to public databases for public use
Data sequences and annotations may be used as precise molecular markers via PCR or qPCR.
Data sequences and annotations may be used as precise molecular markers via PCR and sequencing.

SNP1 (desirable trait)

```
CCCGTTAGGTAACCTTGGAAAGCGA
```

SNP2 (undesirable trait)

```
CCCGTTAGATAACCTTGGAAAGCGA
```
Data sequences and annotations may be used as target/s to focus on gene function studies (aka as reverse genetics)

- Known gene sequences may be used as markers, transgenes or RNAi sequences
Characteristics of crop genomes

• Mostly huge
 • Number of genes almost the same
 • Repetitive elements content makes up the difference
• Notorious for polyploidy
• However, gene order or synteny occurs
Synteny
Application of synteny
Sequencing of crop genomes

- Greatest challenge is genome size
- Exome sequencing an alternative
- Use synteny to study big genomes that are not accessible via WGS
- Use resources such as BACs to search for genes of interest
Gene search in loblolly pine using BAC resources

Probes used

cell wall synthesis
 cellulose synthase
 cinnamyl alcohol dehydrogenase
 expansin (alpha)
 fasciclin-like AGP
 glucomannan synthase
 glycoside hydrolase family 28
 Korrigan endoglucanase
 laccase
 lignin related
 phenylalanine ammonia lyase
 sucrose synthase
 UDP glucose pyrophosphorylase
 UGP mannose pyrophosphorylase
 vein patterning

transcription factors
 assymetric leaves-like; LOB domain transcription factor
 brassinosteroid responsive transcription factor
 brassinosteroid-insensitive; shaggy-like protein kinase
 bZIP transcription factor
 HD Zip III
 Kanadi, Myb-related protein
 KNOX homeobox transcription factor
 LIM domain protein
 Myb family transcription factor
 NAC domain
 R2R3-MYB transcription factor
 transcription factor WRKY1

disease resistance
Gene search in loblolly pine using BAC resources

Masked repeats using Repeatmasker

Retrotransposons the most abundant repeats

BLAST, FGenesh, Augustus and GeneMark to predict genes and Artemis to view predictions
Gene search in loblolly pine using BAC resources

Masked repeats using Repeatmasker

Retrotransposons the most abundant repeats

BLAST, FGenesh, Augustus and GeneMark to predict genes and Artemis to view predictions

Annotation of 114 gene models

9 predicted genes

105 pseudogenes
Benefit from pathogen and pest genome sequences

- Provide clues on pathogenicity, virulence and/or infectivity
 - May assist breeding programs on what to select
- May afford gene sequences for use in transgenic and RNAi techniques
Benefit from transcriptomic/proteomic/metabolomic research

- Allow for a better understanding of the biology of an organism
- May assist breeding programs on what to select under a specific condition
- May afford additional information on gene and protein expression
- Aid in identifying mechanisms associated with a process for the organism
Bacterial panicle blight
Bacterial panicle blight (BPB)

- Caused by *Burkholderia glumae*
- First observed in Asia in the 50’s and in the late 90’s in the U.S.
- Aggravated by hot and humid conditions
- May cause up to 70% in yield loss
- No reliable source of resistance known
- Disease cycle and pathogenicity unknown
Searching for mechanism of resistance

CL161
Resistant rice seedlings and

CL151
Susceptible rice seedlings

Water inoculated

B. glumae inoculated

sample after 48 hours

Total RNA

Total RNA

Total RNA

Total RNA

host transcriptome

host transcriptome

host transcriptome

host transcriptome

pathogen transcriptome

pathogen transcriptome

(pathogen transcriptome (3 reps)

miRNAome

miRNAome

miRNAome

miRNAome (2 reps)
A cursory look at the DE transcripts

- Known resistance genes (transcripts) against rice blast and bacterial blight are not expressed at the inoculated condition.
- Different kinds of defense response transcripts are up-regulated in the resistant and susceptible genotypes.
PIF-like ORF1

- P instability factor
- Class 2 transposable element
- Constitutively expressed in resistant line
- PIF has 2 ORFs
 - ORF2 is transposase (not found)
 - ORF1 probably involved in DNA and protein binding
NBS-LRR resistance genes

- Ancient
- Involved in pathogen recognition
- Present in large numbers
 - Occurs in clusters (most cases)
 - A lot are pseudogenes (illegitimate recombination)
- Usually negatively regulated
 - Activated by ATP
Gene Ontology annotation of differentially expressed transcripts
Quantitative RT-PCR Validation
Conclusion (transcriptomic section):

1. Known resistance genes against rice blast and bacterial blight are not expressed in the resistant genotype; some not even in the water control.

2. Transcripts involved in pathogen response are constitutively expressed in resistant genotype. They include activation partners and other downstream components of the resistance pathway.

3. A once part of a transposable element appeared to have been co-opted as a defense arsenal.

4. Resistance may have existed prior to rice domestication.
Public Databases

- cell phones, tablets, etc

Details on how to grow, care and select for a genotype of a crop on a specific environment under a specific set of conditions.
ACKNOWLEDGMENT

University of the Philippines
National Institute of Molecular Biology and Biochemistry
Department of Science and Technology
Philippine Council for Industry, Energy and Emerging Technology Research and Development

Dr. Dan Peterson
Dr. Dana Nelson
Dr. Jeff Dean
Dr. Joe Nairn
Dr. Ron Sederof
Dr. Dinum Perera
Ms. Seval Oskan
Mr. Ben Bartlett

Dr. Shien Lu
Dr. Teresia Buza
Dr. Chuan-Yu Hsu
Mr. Kurt Showmaker
Mr. Peng Deng
Dr. Philippe Chouvarine
Mr. Tony Arick