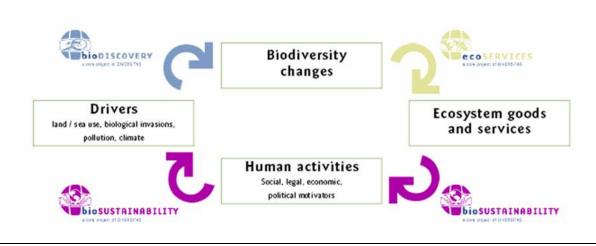


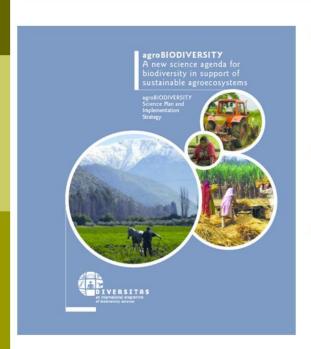
Appendix R

Donors' Perspectives: Earth System Science Partnership (DIVERSITAS)

Dr. Lijbert Brussaard
Professor, Department of Soil Quality and
Director, Graduate School Production Ecology and Resource
Wageningen University and Research
Wageningen, Netherlands

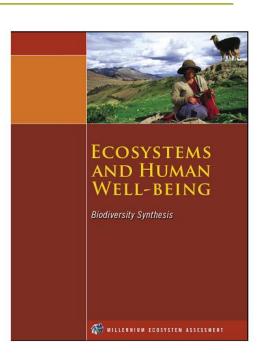


Realizing Challenges, Exploring Opportunities


DIVERSITAS goals

- Interactive biodiversity science, linking biological, ecological and social disciplines to produce socially relevant new knowledge
- to provide the scientific bases for the conservation and sustainable use of biodiversity

agroBIODIVERSITY Science Plan


Three Foci:

- Determining the factors that increase biodiversity in agricultural landscapes and anticipating the impacts of social and environmental change (bioDISCOVERY)
- Using biodiversity in agricultural landscapes to enhance ecosystem goods and services (ecoSERVICES)
- Ensuring that society supports the use of biodiversity for sustainable agriculture and equitable sharing of the benefits of conservation of agrobiodiversity (bioSUSTAINABILITY)

Millennium Ecosystem Assessment

- Past 50 years: Rapid loss of biodiversity and its ecosystem services, especially in agricultural landscapes
- Strengthen response options for conservation
- Science: understanding functions, services and value of biodiversity
- Business: challenges as well as opportunities

Hypotheses

for developing agrobiodiversity science for human well-being in agricultural landscapes:

- Modern high-input intensification of agriculture builds pressure on biodiversity and environmental quality
- Biodiversity-based practices can reduce this pressure by providing ecosystem services:
 - traditional management practices
 - adoption of new uses of biodiversity
- Reducing the pressure from agricultural intensification will:
 - extend habitats of wild species
 - enhance ecosystem services at the landscape level
 - provide resilience and risk mitigation
- Rewards, recognition, and PES will build social capital and public support for conservation of biodiversity

ncreasing Pressure on Protected Areas from Agricultural Intensification

Possible sites

Sacramento Valley, USA: Wetlands & intensive agriculture (Jackson)

Paraná, Brazil:

Watershed protection & agriculture (Brown)

Sierra Madre de Chiapas, México:

Deforestation & erosion (Garcia-Barrios & Perales)

Western Ghats, India:

Forest margins and livelihoods (Bawa)

Sumatra, Indonesia:

Forests & agroforestry (van Noordwijk)

Topics

Indicator measures of BD in & outside protected areas

Functions, services, and value of agroBD

Impacts of agroBD on neighboring protected areas

Participatory approaches for BD use & conservation

Potential for PES & other incentives to conserve BD

Outcomes

Strategies
for assessing
the value of
biodiversity
as natural
capital and
for human
well-being,
and engaging
society for
biodiversity
conservation
in
agricultural
landscapes

Biodiversity and functioning of ecosystems

- Higher plant diversity increases productivity of grasslands (Tilman et al. 2002, Loreau et al. 2004)
 - Functional complementarity: different species function in different ways
 - Spatial heterogeneity: favors coexistence of different species
 - Redundancy: number of species is less important for ecosystem services than the presence of functional groups
- Resilience: persisting and adapting to change
 - Adaptive capacity: options for ecosystem reorganization following disturbance that reduce vulnerability to ecological or economic problems
 - Insurance value: risk mitigation especially at the landscape scale

